

A Synthesized Signal Generator from mi £8,000? $£ 6,000$? $£ 4,000$? under $£ 2,000$?

Somehow some of our customers have been persuaded that our prices are as big as we are. Sometimes the biggest brains are the most cost-conscious brains. For example, our illustration shows a synthesized signal enerator which costs $£ 1,900$ *: the new 520 MHz TF2015// Signal Generator with its associated Synchronizer. With this combination, synthesizer
operation is obtainable without any degradation of generator signal purity, performance and versatility Leakage specification is lower than any other available VHF/UHF source and output accuracy at low levels beats all others in the price range.
TF2015 for performance, reliability and value, we have now introduced two new a.m.ff.m. versions: the TF2015/I for narrow band mobile radio testing and TF2015/2 for telemetry and other wideband applications. The U.K. price for TF2015/2 with Synchronizer is
 with calibrated a.m. and f.m.

Tuning in 100 Hz steps whilst under locked conditions provides a valuable facility for bandwidth measurements provides a valuable facility for bandwidth measurements
and channel stepping. Digital setting of frequency with
direct readout means no waiting for counter gate times direct readout means no waiting for counter gate times
when you want high resolution, and no r.f. leakage from when you want
display holes.
*Special U.K. price
One in four
Only one in four of our customers tells us he needs the stability of a synthesizer. So the other three can sav buying the analogue part alone. So, whether you require a synthesizer or a signal generator you can now obtain quality at ordinary prices. Optional accessories include Pulse Modulator TF2169, i.f. probes for 'squelch killing', multiple calibration plates
for units of output level, matching pads, attenuators, reverse power protection and carrying case. Write or 'phone for full details:

Marconi Instruments Limited - Longacres - St. Albans • Hertfordshire • England AL4 OJN • Tel: (0727) 59292 • Telex: 23350
 Marconi Instruments - 32 avenue des Ecoles - 9160 Savigny-Sur-Orge - France - Tel: 996.03 .86 . Telex: $600541 . \mathrm{F}$
Marconi Messtechnik $\mathbf{G m b H} \cdot 8000$ München 21 borgstrasse 74 . West Germany - Tel: 0089$) 582041$. Telex: 5212642

wireless world

ELECTRONICS/TELEVISION/RADIO/AUDIO

MARCH 1979 Vol 85 No 1519

43 Performing blights
\qquad ter operated by Swiss PTT on V.h.f. and u.h.f. colour. Photp:
The Hamer-Smith Swiss col-

IN OUR NEXT ISSUE Home computer. The
start of a series on the start of a series on the
construction and use of a microcomputer, which uses a novel language
and which is designed for and which is designed for
mathematical problem solving.
Teletext remote control
is a further unit designed is a further unit designed
to extend the usefulness of the Wireless World teletext decoder.
Digital data recording without f.s.k. A simple recorders using differenrecorder
tiation.
Curtant issue price 40 p. backi istue)
(if available) 50 p. at Retail and Trade Counter, Paris Garden, Lon-
don SE1. Alavaiabie on microfilm
please don SE1. Avalabie on microfilm
please contact editor. By post, current issue 55p. back
issues (if available) 50p, order and

 Editorial \& Adverising offices:
Oorset House, ,
tramford Street, Telephhones: Editorial 01-261.
8620. Advertising 01-261 8339 . Telegrams $/$ Tolexe: Wiworld Bis-
nespres 25137 BISRS G Cables: Ethaworld, London SE1. Subscription rates: 1 yearar $\in 7.00$
UKand $\$ 23.40$ overseas $\$ 24$ USA UK and $\$ 23.40$ overseas ($\$ 24$ USA Student rate: 1 year, $£ 3.50$ UK)
and $£ 4.50$ overseas ($\$ 11.70$ USA and Canada).
Distribution: 40 Bowling Green:
ECl
 Teiephone 01-837 3636 .
Subscriptions: Oakkield House, Subscriptions: Oaktield House,
Perrymount Road, Haywards,
Heath. Sussex. RH16 30 H Heath, Sussex. RH 1630 BH,
Telephone 0444,59188 , Pleases. USĀ maililing agenis: Expertiters of the Printed Word Ltd, 527 Madison
Avenue, Suite 1217, New York, NY
Aventer Avenue, Suite 121, New York, NY
10022, 2nd-class posstage paid at
New York.
. New York,
NIPC Businss Press Ltd, 1979
ISN 00436062
ibpa ABC

1

JVC.
BELL\&HOWELL. SUPERSHIELD.
Choose video equipment with all these names in mind.

Above: a new, complete and outstanding video system from JVC.
One three-tube colour camera, of studio quality but portable. Two One three-tube colour camera, of studio quality but portable. Wito
editing U-format video cassette recorders. One automatic editing editing U-format video cassette recorders. One automatic editing
control unit. Designed to meet broadcastrequirements, and therefore excellent in any other application, they should be seen in action
before deciding how to re-equip a video production centre which betore deciaing how to re-equip a video production centre which
aims at the highest standards (though by no means at the highest current price).
At the other end of the comprehensive JVC range is low- \mathbf{N}-cost equipment for surveillance and similar tasks. Between the extremes:
a wide choice of b / w and and U-format). And now, of course, VHS -VHS made by the people who invented and developed it, JVC demonstration, use the coupon. We'll also send you a leaflet on Fuji video tapes, worth reading about because their exclusive Beridox coating is so good for the picture.
Well also tell you about the third name in our headline, Supershield. This is a new and, we believe, unique guarantee,
covering all video and audio-visual products made or distributed covering all video and audio-visual products made or distributed
Bell \& Howell (excluding only camera tubes, tapes and proiector Beil \& Howell (excluading only camera tubes, tapes and projector
lamps). For two years atter purchase, Supershield gives free
technical advice, free parts with no labour charges, and (in mainlan
Great Britain) free collection from your premises to one of our Gupershield workshops and free delivery back to you when the job is done. JVC plus Bell \& Howell was already a strong combination.
JVC plus Bell \& Howell plus Supershield, plus a national network of JVC plus Bell \& Howell plus Supershield, pl
first-class dealers, should be unbeatable.
Please tick squareses, fill in your name, clip coupon to y
letterhead and mail in an unstamped envelope to
Bell \& Howell A-V Lidd, Freepost, Wembley, HAO 1 BR. Leafiets, please, on $\square_{\text {products generall }}^{\text {JVC video }}$ \qquad $\square^{\mathrm{JVC}} \mathrm{VHS}$ \square Demonstration

Name
回 BelleHowell

$£ 85 £ 90 £ 105 £ 110 £ 115$

FREQUENCY
ACCURACY
SINE OUTPUT
DISTORTION
SQuARE OUTPUT SQNAREOTPUT
METER SCALES
SIZE \& WEIGHT
3 Hz to 300 kHz in 5 decade ranges. 3 Hz to 300 kHz in 5 decade
$\pm 2 \%=0.1 \mathrm{~Hz}$ to 100 kHz .
Increasing to $+3 \%$ Increasing to $\pm 3 \%$ at 300 kHz . 2.5 r r.m. s down to $<200 \mathrm{HV}$, 2.5V r.m.s. down to $<200 \mathrm{HV}$
$<0.2 \%$ from 50 Hz to 50 kHz .
$<1 \%$ from 10 Hz to 20 kHz $<1 \%$ from 10 Hz to 200 kHz .
2.5 V peak down to $<200 \mu \mathrm{~V}$

 $\substack{\text { 2 } \\ 260 \times 130 \times 180 \mathrm{~mm} .3 .4 \mathrm{~kg} \text { with } \\ \text { batteries. }}$
TG152D TG152DM $\mathrm{We}_{\text {meter }} \mathrm{L}$ FREQUENC accuracy

SINE OUTPUT. distortion METER SCALES
SIZE \& WEIGHT 0.2 Hz to
controls. ${ }_{+}^{\text {controls. }}+0.02 \mathrm{~Hz}$ below 6 Hz . $+0.3 \%$ from 6 Hz to 100 kHz .
$+1 \%$ from 100 kHz to 300 kHz . $+3 \%$ above, 300 kHz .
5 V rith $\mathrm{R}=$
600 ...s. down to $30 \mu \mathrm{~V}$ with $=$ 600Ω.
$<0.15 \%$ from 15 Hz to 15 kHz .
$<0.5 \%$ at 1.5 Hz and 150 KHz . < 5 Expanded voltage and $-2 /+4 \mathrm{kHm}$
$260 \times 180 \times 180 \mathrm{~mm} .5 .4 \mathrm{~kg}$ SIZE \& WEIGHT $260 \times 180 \times 180 \mathrm{~mm}$. 5.4 k $\underset{\substack{\text { B.aitay } \\ \text { moded }}}{ }$ 225 Prices are ex works with batteries. Carriage, packing and VAT
exter extra.
Optional extras are leather cases and mains power units.
Send for data covering our range of portable instruments.

LEVELL Eletranacs ito.

Artistic licence?
We at QUAD go to a very great deal of trouble to ensure that with a QUAD 33 in the Cancel position, the voltage delivered to your loudspeakers is a virtually exact RIAA transfer of the voltage the pickup will produce into a stated passive load. Nothing added - nothing taken away.
A visiting journalist recently suggested that we should not do this. Pinal adjustment should be done by ear, he said.

What an opportunity!

After all we know that if we add a little warmth with a subtle boost in the lower middle and balance this with an ever so gentle hump and balance this with an ever so gentle hum in the quack region ($2-3 \mathrm{KHz}$), we can make impressive. Come to that, why not change the impressive. Come to that, why not change the
$3180 \mu \mathrm{~S}$ to $5000 \mu \mathrm{~S}$ adding a little more 'heft' that $3180 \mu \mathrm{~S}$ to $5000 \mu \mathrm{~S}$ adding a little more 'heft' that
most people will fall for. We could even make a special model for the boom and tizz brigade.

Been to any live concerts recently ?

For further details on the full range of QUAD products write to:
The Acoustical Manufacturing Co. Ltd., Huntingdon, Cambs. PE18 7DB
Telephone : (0480) 52561

(O) AD 蜼

for the closest approach to the original sound

The Ultimate multi-mate

It's easy to see why Philips new PM 2517 digita multimeter is called The Ultimate Multi-mate No other DMM comes anywhere near its

Full 4-digit display giving higher resolution than $31 / 2$ digits for 80% of measurements. Parameter readout, too.
Choice of LED or LCD display - choose the one that suits you, Choice of LED or LCD display - choose the one that suits you,
the price is the same. Mains unit supplied free with LED version Autoranging with manua
override. Average auto override. Average auto
response time less than two seconds.
combination of laboratory performance and handy form - for such a handy price. Take a look at some of the features it packs in.
Small and sturdy construction makes this DMM ideal for bench or field work.

Ergonomic design allows it to
Ergonomic design allows it to
work in any position
without fuss or fumble work in any position
without fuss or fumble.

Trua RMS

Uitimate Mutectionste measures non sinewave $A C$ signa
more accurately High accuracy Migh accuracy -
negessary to make necessary to make four digits. An impressive 0.2\% of reading $\pm 0.05 \%$ of scale on d.c. volts. Current to 10A via a separate
input is
input is
standard, not
optional, on
the PM 2517.
Overioad protection
hat is so comprehensive you
have to try very hard to do any
damage, even with
booster voltages.
The Ultimate Multi-mate is available from
The Ultimate Multi-mate is available from
Wessex Electronics Ltd.. $114-116$ North Stree
Wessex Electronics Ltd... 114-116 North Stree
Downend, Bristol BS16 5SE. Tel: (0272) 571404
Rank Radio International, Watton Road, Ware, Herts. (Tel: Ware 3966):
and Philips Service Centres
('phone $01-686-0505$ for the address of your nearest branch).
PHILPS
A
\square

Test\& Measuring
Instruments

PHILIPS

Our early involvement can save a good idea from becoming a flashin the pan.

In the development of a project, the design engineer cannot afford to become involved too deeply in every associated technology.

He often needs the help of specialists in solving particular problems. Especially where electrical connection is concerned.

AMP Sales Engineers offer such a specialist service. Working in close co-operation with the design team while the ideas are still very flexible can often prove invaluable.

And the results of involving AMP at the earliest stage of design canbedramatictosay theleast-more reliable circuitry, improved performance with greater output and economy in production.

In fact, when the capabilities of AMP are coupled to the designteam's engineer's flair and inventiveness you have a unique combination. A combination for success.

Call in AMP on your next design job, telephone 01-954 2356.

You'll certainly find our early involvement a great help.

MCMMMMOMS
 thebig choice
 Type 224 - the ruggedized monitor for those really demanding situations - extremes of weather, temperature, vibration and frequent change of site. Standard KGM monitors range from $12^{\prime \prime}-24^{\prime \prime}$. Our long experience o
 VDU's - visual display units have also been supplied in large numbers to suit customers' requirements. Tell us your needs and we will gladly quote
 Send for your data sheets on the full range of CCTV monitors and cameras designed and manufactured by KGM KGM also supply an extensive range of ancillaries and distribution units.
 حת Eectronics Clock Tower Road, Isleworth, ELectronics Middlesex TW7 6DU Tel: 01-568 0151. Telex: 934120
 ww - o43 For further details

If you want your connectors to have a good innings specify Ferranti.

Ferranti circuit board edge connectors are known for their staying power. They're designed for a far higher number of insertions and withdrawals than you'relikely to make. They eed to be, so that you can rely on them throughout their working life.
You'll like our other design features too. Low force spring contacts. Gold flashorfull gold platingonthecontacts as you wish. Terminals for wire wrapping or soldering. Many options; pitches of . $100^{\prime \prime}(2.54 \mathrm{~mm})$)-modular connector, $.150^{\prime \prime}(3.81 \mathrm{~mm}) .156^{\prime \prime}(3.96 \mathrm{~mm})$ and $.200^{\prime \prime}(5.08 \mathrm{~mm})$.

Contact: Connector Sales, Ferranti Limited, Professional Components Department, Dunsinane Avenue, Dundee DD2 3PN, Scotland. 76166 Distributors: Giltech Components Ltd., 22 Portman Road Battle Farm Industrial Estate, Reading, Berks RG3 1ES Telephone: 0734582131

FERRANTI
 Connector Capability

 TION For details of the full range of Electronic Test Equipment: Capacitance Meters DMN'S Frequency Counters

Testers
Contact - Sole UK Distributors
RADIOSUPPLIES(Components)LTD.
P.O.BOX 27

39 WHITBY STREET,HARTLEPOOL CLEVELAND. TELEPHONE: 0429-75750
Three Of The Best From..... BN PRECISION OYNASCAN Scopes Power Supplies and Semi-Conductor

220 TELEP New PortableDigita Capacitance Meter FEATURES: Measures capacita
to 1 Farad in 10 ranges. to 1 Farad in 10 ranges.
Resolves to 0.1 pF on lowest
 display. 0.5% accuracy . Special
lead insertion jacks and acks. Fuse protected. Uses either echargeable or dispo

3-1/2Digit
Lab
DMM
FEATURES: Bright $3 / 2$ digit LED display - $0.5 \% \mathrm{DC}$ accuracy: $100 \mu \mathrm{~V}, 100 \mathrm{AA}, .01 \Omega$ resollution $\cdot 10 \mathrm{mV}$
AC and DC ranges. Selectable high-low-power ohms protected. AC operation standard, DC power pack optional - Protected against RF interference - Built-in 10 amp current range.

New from AMCRON
Real Time Analyser RTA2

The Amcron RTA2 Real Time Analyser is designed as much for use as a production tool as it is for on-site audio analysis of theatres, and
ecording studios. A flight case is available.
$\star 5$ CRT Display
\star Internal Pink Noise Source
$\star 1 / 3$ or 1 octave Display
\star Frequency range $20-20 \mathrm{kHz}$
\star Outputs for X-Y Recorders
\star Compatible with any
\star. Price $£ 1,960$ ex. VAT

The AMCRON D75 power amplifier replaces the previous model D60 The ALCoy completely new type circuitry it offers also many new
Employing features but without any increase in the pric
\star New Amcron $10 C$ comparator.
\star Balanced XLR input connectors.
¿ Balanned XLR in com tornerator
\# Signal Presence indicators.
\star Signal Presence indicators.

* 45 watts into 8 othm per channel
\star Price $£ 230$ ex. VAT.

Other AMCRON products include:
DC300A amplifier 500 watts/chan.
DC30.0A amplifier 500 watts $/$ ch
D150A amplifier 200 watts/ han
VFX2A Electronic Variable Filter
VFX2A Electroni
EO2 Equaliser
IC2 50 A Pre-amplifie
IMA Intermodulation
IMA Intermodulation Distortion Analyser unit $£ 260$

[^0]

INSTANT TRUNKING SYSTEM!

Ready to use. Internal wiring suitable for 30 amp TR6 - 6 sockets switched $£ 21.50$ TR9-9 sockets switched E25.50
+

PORTABLE POWER DISTRIBUTION
NEW! 10 sockets switched
in sloping box

Type 13A/10SW $£ 27.50$. P\&P $£ 1.85+$ VAT
 4 sockets 13 A . witche
6 sockets 13 A switched

ALİ DISTRIBUTION PANELS ARE FITTED WITH MK SOCKETS \& PLUG
 WW-017 FOR FURTHER DETAIL

The professionals' colour pattern generator

Over 20 patterns to CCIR or RTMA standards

- Full RF coverage: TV IF, Band I-III- IV and V.
- Electronic tuning and choice of six preset channels.
- Synchronisation according to TV standard, also obtainable as
- Adjustable Video, calibrated Chroma/burst and variable RF Chroma/bur
àmplitude.
- Internal/external video and sound modulation.

Linearstaircase signal with 8 identical steps combined with definition pattern
of 5 vertical bars at $0.8-1,8-2.8-38$ of 5 vertical bars
and 4.8 MHz .

Find out more about the PM 5519 and the rest of the Philips audio and video service equipment range by requesting our new Service Brochure.

This pattern generator is the finest available for precise measurement and alignment work on video equipment including domestic TV receivers,
VCR's, VTR's, VLP's, closed circuit and cable TV installations. Service technicians, video
development engineers. TV broadcast development engineers, TV broadcas
staff and lecturers will all appreciate staff and lecturers will all apprecia
the quality and ease of use of this compact but very versatile pattern compact but very versatile pattern
generator. More than 20 patterns are available on six channels frequencies
using instant touch-button selection. The RF, video and trigger outputs are superior to many other portable generators and closely resemble those
transmitted from your local TV station. transmitted from your local TV station.

PHILIPS

Buying video equipment?

Then talk to someone who picks horses for courses
better than most.

The JVC VHS recorder and GC3300 camera form an economical colour system for duties like rôle playing and product demonstrations.

[^1] applications: JVC's NUI800.

The outstanding new JVC CY8800, truly portable but with a 'studio' standard of performance.

Before making a purchasing decision, talk to one of
Bell \& Howell's specialist video dealers. You'll find he's specialist with some special qualities. He knows everything worth knowing about the JVC and other video products distributed by Bell \& Howell, as you'd expect. He also knows which of these products, or which combination of them, is likely to be best for whatever video job you have in mind. Indeed, he'll even resist the temptation to sell you any kind
of video equipment if your message can be conveyed just as of video equipment if your message can be conveyed just as
well by a tray of slides plus a cassette of audio tape. Conversely, he'll have the courage to start talking in fou figures, or maybe five, if a substantial investment is what you've got to make.
And, when the decision has been made and the order placed, you have a guarantee of highly skilled free adviee on anything to do with the equipment you buy. That's part of the
exclusive new Bell \& Howell Supershield warranty, which also exclusive new Bell \& Howell Supershield warranty, which also

CR8500LE,JVC's new U-format recorder, designed for assemble and insert editing and with important
special features. special features.

AJVC configuration for U -format recording on location, based on the CR4400 portable recorder and two-tube
GC4800 colour camera.
guarantees free replacements or repairs, with no labour charges, for two years from the date of purchase.* First-class video equipment. First-class advice. The support of a first-class (and, we believe, unique) guarantee. For all of these, just contact one of the Bell \& Howell specialist video dealers whose names and addresses you can obtain by using the inquiry service or writing in an unstamped envelope to HAO IBR (01-903 5411).
*This two-year warranty even includes video heads and excludes only video tapes and camera tubes. in mainland Britain, too, we collect and deliver

BelleHowell

One of the current JVC range of $3 / 4 \mathrm{in}$. U-format video cassette recorders, with full remote control.

100,000,000,000,000 Ohms

The AVO RM290 is a bench type megohmmeter with a resistance range that
goes up to $10^{11} \Omega$:making it ideal for those applications where there is a need to measure the electrical resistance of non- conducting materials...accurately You can use the RM290 for tests on
insulating components in electronic assemblies or on capacitor dielectrics Resistance measurements can be made at test voltages of $100,250,500$ or 1000 V . Readout from the single resistance scale on the meter is direct, irrespective of the test voltage selected.
youllf ind touch with us today and wéll let you have the full facts.
wW - 039 FOR FURTHER DETAILS

Only Valves are good enough for this customer.
As the demand for high quality sound increases, so does the need for $\mathrm{M}-\mathrm{OO}$ valves.
performance many listeners now demand.
M-OV Beam Tetrode KT77 and KT88 valves meet
all audio market requirements fro
KT77 is especially rugged and ultral linear.
KT88 is a proven long-life valve that is at hon
equipment.
equipment. Get in touch with us now for technical data and details
worldwide distribution.

MOV

ELECTRONIC
INDUSTRIAL THERMOMETER

THE MODERN WAY TO MEASURE TEMPERATURE A Thermometer designed to operate as an Electronic Test Meter. Will
-measure temperature of Air. Metals. Liquids. Machinery. .etc., etc. Just plua-in the Probe, and read the temperature on the large oper
scale meter. Supplied with carrying case, Probe and internal $1 / 2$: volt standard size battery. Model "Mini-Z 2^{2} ", measures rom- $-5^{\circ} \mathrm{C}$ to $+10^{\circ} 5^{\circ} \mathrm{C}$. Price $£ 330.00$

HARRIS ELECTRONICS (LONDON)
HARRIY
(Phone 01-837 7937)
WW-015 FOR FURTHER DETALLS

WIRELESS WORLD. MARCH 1979

15-240 Watts!

HY5 Preamplifier

HY30
15 Watts into 8Ω

HY50
25 Watts into 8Ω

HY120
60 Watts into 8Ω

HY200
120 Watts into 8Ω

HY400
240 Watts into 4Ω

POWER
SUPPLIES

Electronics Lto

Graham Bell House Roper Close Roper Close Canterbury Tel (0227) 54778

Please Supply
Total Purchase Pri
Enclose Cheque \square Postal Orders Moner Order \square
Please debit my Access account \square Barclaycard account \square Account number-
Name \& Address

For value in frequency counters, count on US.

BIMTOOLS + BIMACCESSORIES

er
MAINS BIMDRILLS
Small, powerful 240 V hand drill complete with 2 metres of cable and
2 pin DIN lug. Accepts all tools with $1 \mathrm{~mm}, 2 \mathrm{~mm}$ or . $125^{\prime \prime}$ "dia. shanks

 Mains Accessory Kit 1 in
Mains Accessory Kit 1 includes $1 \mathrm{~mm}, 2 \mathrm{~mm}, 125^{\prime \prime}$ twist drills, 5 burrs
and 2.4 mm collet $£ 2.48$
Mains Kit 2 includes Mains sIMDRILL as above, 20 assorted drills, mops, burrs, grinding
wheels and mounted points, $1 \mathrm{~mm}, 2 \mathrm{~mm}, 2.4 \mathrm{~mm}$ and $125^{\prime \prime}$ collets. Complete in trans. DLL
COMP COMPATIBLE
BIMBOARDS

$$
\begin{aligned}
& \text { BIMFEET } \\
& 11 \mathrm{~mm} \text { dia. } 3 \mathrm{~mm} \text { high, grey rubber self-adhesive enclosure feet } \\
& \text { fo. } 77 \text { per pack of } 24
\end{aligned}
$$

12 VOLT BIMDRILLS
2 small, powerful drills easily hand held or
Integaia on/off switch and 1 metre cable.
Minal
Minin BIMDRILL with 3 collets up to 2.4 mm dia. $£ 8.10$
Major BIMDRILL with 4 collets up to 3 mm dia. 813.6 .
Accessory Kits 1 have appropriate dritls and collets as above plus 20 assorted
tools. Min Kit 1 - 115.12, Major Kit $1-$-19.44. Accessory Kits 2 have apporo-

Accept all sizes
14-50 pin
packages as of well a packages as well as
resistors, idodes
capacitors and LEDs. capacitiors and
Integras Bustrips
in each side for up each side tor
ower lines an Component Support
Brackent for hold ing
lamps, switches and
 units, the latter mounted on $1.5 m m$ thick
black aluminium back plate which stand on lack aluminium back plate which sta
non slio rubber feet and have 4 screw nor silp rubber feet and have
terminals for incoming powe BIMBOARD 1 has 550 sockets, multiple units
utilising 2,3 and 4 BIMBOARDS incorporate Utilising 2, 3 and 4 BIMBAARDS incorporate
10.1 . 1650 and 2200 sockets, all on 2.5 mm

BIMBOARD 1 £ 8.83 BIMBOARD 2 £21.01 BIMBOARD 3 £29.84
BIMBOARD. 4 £ 38.79 DESIGNER PROTOTYPING SYSTEM
2. or 3 BIMBOARDS mounted on BIM 6007
 back protect ion Poower railit brourcuit and fout to cable

DESSNER 1 f55.62 DESIGNRR 2 \& 61.02 DESIGNER f66.42

..F=ON

Building an industrial control system has never been simpler. Wherever there is a need to automate production machinery or process plant the new Bulgin System is the answer.
Sequences, times and other quantities required for a programme are simply set up on each module with a screwdriver. Then each module is plugged into the mother board and switched on. It's as easy as that!
Result - a great deal of time and money saved, plus a really reliabe have matched precisely to your machine or process.
Send for our brochure today.

Bulgin Flectronics One of the Eugin Group of Companies Sounndex Ltrol

Park Lane, Broxbourne, Herts. Tel: Hoddesdon 64455

Cassettecopiers fromPENTAGON

Simple operation-fully automatic 16 times speed. Choice of one or three copies. C32/34outproduces all other makes-75 C60 per hour. Budget Price from $£ 587$ + VAT

The FOR-4 Mark 2 The new Medelec FOR-4. 2 fibre optic ecording oscilloscope is the result of a constant policy. It incorporates. many refinements which have been made to customers' specia requirements. The FOR-4. 2 provides industrial and research
users with high quality recording facilitities at really ow cost. X-Y Plot, Transient and Raster mode are all available in a single
instrument.
medelec 象
Leaders in Fibre OpticRecording

METER PROBLEMS?

137. Standard Ranges in a variety of sizes and stylings available for $10-14$ days delivery. Ohe Ranges and

Full Information from:
HARRIS ELECTRONICS (London)
FOR-4-2 include:
-10 times gain X and Y -Fully automatic triggering (with higher sensitivity) - mproved recording facilities lor groar exibinty - Light control filter
(for excelient contrast) - Wide speed range (from 0.1 to $1000 \mathrm{~mm} / \mathrm{sec}-$ in 3 models) - Internal loudspeaker (for audio monitoring) For further information on the instruments in the range, contac MEDELEC LIMITED MEDELEC LIMITED Manor Way, Woking
Tel: Woking (048 62) 7033 Tel: Woking (048 62) 70331
Telegrams: Medelec, Woking

WAIFORD EEEGRONICS

33 CARDIFF ROAD. WATFORD, HERTS, ENGLAND Tel. Watford 40588/9.

DM 900

THERE ARE 900 REASONS FOR BUYING THIS MULTIMETER (with direct reading capacitance range]
Its 900 cubic centimetres are packed with up to the minute technology offering a low cost yet accurate
method of measuring voltage, current, resistance and method of measuring voltage, current, resistance and
capacitance too, on a total of 30 RANGES. The capacitance too, on a total of 30 RANGES. Me
WATFORD ELECTRONICS DM 900 uses latest MOS WATFORD ELECTRONICS DM900 uses latest Mos Display for extremely low power consumption.

Specifications:

The DM900 incorporates dual slope A/D conversion; true auto zero; polarity and overrange indication; battery
and display test facilities. Its input impedance of over $10 \mathrm{M} \Omega$ allows voltage measurements in high impedance circuits without distorting circuit operation.
The DM900 is small and robust. It measures only $160 \times$ $95 \times 60 \mathrm{~mm}$ and is housed in an ABS case which will fit in your coat pocket or briefcase
The DM900 has been specially designed for Watford or ready built
Special Offer: $£ 78.50$ plus VAT (p\&p insured add 80p) Also available in Kit form for the Enthusiast at $£ 54.50$ plus VAT plus 80 p (probes and carrying case $£ 3.00$ extra)

New from GREENWOOD

PANNASE

 a precision vice that rotates a full 360 degrees-tilts 180 degrees from vertical to horizontal, and offers a choice of 3 bases, 3 heads, a bench clamp and a PCB holder.We think it's like no other vice you've ever'used. It head rotates
a full 360 degrees - and tilts 180 degrees from vertical to
One conventional knob locks work in any desired position, vacuum base - a standard, low profilie or wide opening head -a bench clamp mounting base - a printed circuit board holder
and of course replacement j jaws and pads if ever you need them.

Greenwood Electronics

troplan Ltd	
West Hyde Developments Ltd Estate Aylesbury, Bucks HP20 1ET	

ww-026 FOR FURTHER DETAILS

w̄̈w-025 For further details

WW - 030 FOR FURTHER DETAIL
TOTAL AMPLIFICATION FROM CRIMSON ELEKTRIK WE NOW OFFER IHE WIDEST RANGE OF SOUND PROB́UCTS -

STEREO
PRE-AMPLIFIERS

 Soll

CRIMSON ELEKTRIK A Aramo

Scopex vital statistics: 2\% more in accuracys around 20% less in price.

JES AUDIO INSTRUMENTATION

$\begin{aligned} & 0-0-9-6 \\ & 0-0-6= \\ & 0-50 \cdot 0 \end{aligned}$	Illustrated Distortion Unit-low tion meas to. 01%	the Si 452 Measuring cost distorrement down £56.00
$\begin{array}{lr}\text { Si451 } & £ 70.00 \\ \text { Comprehensive } & \begin{array}{ll}\text { Millivoltmeter } \\ \text { 350 Volts } & 20 \text { ranges }\end{array}\end{array}$	Si453 Low disto sine -	
J. E. SUGDEN \& CO CARR STREET, CLECKHEATON,	vat Cleckheato W. YORK	$\begin{aligned} & \text { O274) } 872501 \\ & \text { HIRE R19 } 51 \end{aligned}$

This Is The Famous
$£ 99.95$
PLUS 8\% V.A.T.

. ELF 11 Computer

SPECIFICATIONS

 han kepanuardif tuly deceoted so so hlierst's no
heed to waste memory with keyboard
net
 5 slot plug-ins. expansion puws flass comne
lors), stabie crystal clock for timinn pur

 circuilry you ned lod learn every one of the
RCA 1802 s capabilitios

ElFII Explodst into A Oinnt

 - mow bascic Macos Propenm ming ELFII Evon Eutiorl

H. L. AUDIO, 138 KINGSLAND ROAD, LONDON E2 8 BY

h. L. audio Lto.

Use voun 口access ■barclarcabo
USE rountaccess \square eaaclarcand
Accoun no

Signaur ${ }^{\text {Prin Nome }}$ Nod

WIRËLESS WORLD, MARCH 1979

Send now for details of the superb Jensen range of tools, meters and accessory equipment, all in the most handy and robust cases - also available separately. Jensen product
specifically designed for industrial use, perfect for all specifically designed for industrial use, perfect for all
engineers, technicians, electricians, instrument repairmen etc. engineers, technicians, electy kits and cases. Write for free Jensen catalogue to
SPECIAL PRODUCTS DISTRIBUTORS LTD, 1 Piccadilly, London W1V OHL. Tel: 01--62 9556. Cables: Spect prod London W1.

Less Worlo, march 1979

RECHARGEABLE BATTERIES

trade enquiries welcome Full range avaiable to replace 1.5 volt dry cells and 9 volt PP type
batteris. , SAE for lists and prices. $£ 1.25$ for booklet. "Nickel
Cadium Power." lus batteries, SAE for lists and price.
Cadium Power,'", plus catalogue.

DWELL PLANT LTD.

2 SUion Drive, Boldmer
Sutton Coldfieid, West Midlands 021-354 9764 See full range at TLC, 32 Craven street, Charing Cross, London
WC2.

WW-008 FOR FURTHFR DETALLS

sabtronics

Model 2000
Kit $£ 49.95$
$31 / 2$ Digit DMM Kit £ 49.95 . 59.95
assembled.
(plus p.p. $£ .00$ and VAT at 8%) Model 8100
Kit
Kispo.95
assembled
Kissembled tested: $£ 84.95$
(plus p.p. $₹ 3.50$ and VAT at 8%)

The Winners
 \section*{These two products are our}

best sellers!

The two products shown above from Sabtronics
are our best selling products. Both these products compare with similar equipment selling for atlea £ 150.00. II there more to these the a closer look.
The Frequency Counter Model 810 The employs LSI Technology, has the performance and characteristics you demand, guaranted.
freauency range of 20 Hz to 100 MHz ; selectable frequency range of 20 Hz to 100 MHz ; selectable
hi/lo impedance; superior sensitivity; selectable hi/Io impedance; superior sensitivity; selectable
resolution and selectable attenuation. Plus an accurate time base with excellent stability. An 8 digit
LED Display features floating decimal point, leading LED D Display features floating decimal poin,
zero suppression and overflow indicator.
Brief specifications:
Srief specifications:
Frequency Renge: 20 Hz to 100 MHz guaranteed,
(10 Hz to 130 MHz typical) -Sensitivity: 10 mV RMS,

20 Hz to $50 \mathrm{MHz}(5 \mathrm{mV}$ typical); 15 mV RMS, 50 MHz
to $100 \mathrm{MHz}(10 \mathrm{mV}$ tyicial) $)$-Selectable impedance:

 Rate: $\pm 5 \mathrm{ppm} / \mathrm{yr}$-Temperature Stability $\pm 10 \mathrm{ppm}$
$0^{\circ} \mathrm{o} 0.50^{\circ} \mathrm{C}-$ Resolution $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}$, , Hz selectable 0° to $55^{\circ} \mathrm{C}$ - Resolution: $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 1 \mathrm{~Hz}$ select

- Display: 8 -digit LED, floating DP, overfiow
indicator-Overload Protection - - ow Display: 8 -digit LED, floating DP, over
indicator- Overload Protection - Power Requirement: $9-15 \mathrm{VDC}$.
Optional prescaler will be available from aroun Optional presc
March 1979.
The DMM Model 20
The model 2000 is all solid-state, incorporating a
single LSI IIcruit and high quality components.
It has five functions and a total of 28 ranges. Input It has five functions and a total of 28 ranges. Input
overाod protection, auto polarity and auto zero
are provided on all ranges and a basic DCV are provided on all ranges and
accuracy of $0.1 \% \pm 1$ digit.

WW - 078 FOR FURTHER DETAILS

Brief specifications

 DC volts in 5 ranges: $100 \mu \mathrm{~V}$ to 1 kV - AC volts in 5 ranges: $100 \mu V$ to $1 \mathrm{kV}-\mathrm{DC}$ current in 6 ranges:100 nA to $2 \mathrm{~A}-\mathrm{AC}$ current in 6 ranges: 100 A Resistance: $0.1 \Omega 2$ to 20 M 22 in 6 ranges Resistance: 0.112 to 20 MSS in 6 ranges -
AC frequency response: 40 Hz to 50 kHz - Display:
 $10 \mathrm{M} 2-$-Size $: 8^{\prime \prime} \mathrm{W} \times 6.5^{\prime \prime} \mathrm{D} \times 3^{\prime \prime} \mathrm{H}(202 \times 165 \times 7 \mathrm{~mm})$

- Power requirement: 4 " $\mathrm{C}^{\prime \prime}$ cells (not included). - Power requirement: 4 celts (not incluaded).

Order yours no
Timwood Ltd.
Timwood Ltd. Prospect Road, Cowes Isle of Wight, England Telex 86892
Send Isle of Wight, England Telex 86892.
Send payment with your order.

Dual channel multispring reverb unit. Each channel features. four

1.7 Harewood Avenue, Marylebone Road, London NW. Tel: 01-724 2497 Telex: 21879

FRANCE Son Professionnel. 2 Rue des Tennerolles 92210 Saint Cloud (Paris). Tel 6026815

The Transtel 315 word processing communicatio
terminal includes all the best developments and terminal includes all the best developments and
refinements that have been introduced in a decade of Tefinemins stan have
telepinfere tecectology. This high performan
features, including:

- Microprocessor control
- High quality dot matrix printout
- KSR or ASR with up to 8 k memor
- Telex or private wire operation
- Full word editing capability

The Transtel 315 gives you high performance at a moderate price, and with thousands of machin installed worldwide, you need nes
reliability and after sales service.

Contact us today for further information or to arrange a convincing demonstration.

TRANGIEL
Transtel Communications Limited Transtel Communications Limited
Mill Street, Slough, Berkshire SL2 2 DD, England Telephone: Slough (0753) 26955 Telex:

pocket-sized
500 MHz FREQUENCY COUNTER or UHF/VHF or CB mobile radio

* $上 2 \mathrm{ppm}$ accurac (0.0002\%)
* Overload protected
* Built-inNi-Cad
* Exceptional value
* Exceptional value

Frequency Ranges
(Switched) (Switched)
(a) $10 \mathrm{MHz}-50 \mathrm{MHz}$
(b) $40 \mathrm{MHz}-500 \mathrm{MHz}$ (a) $10 \mathrm{MHz}-50 \mathrm{MHz}$
(b) 40 MHz
Sensitivity

Sensitivity
50 MHz range, 30 mV
500 MHz range, 50 mV Display
7 digit, 7 segment LED display $\begin{array}{llll}\text { Dimensions } \\ 4.75^{\prime \prime} & 2.6^{\prime \prime} & 1.25^{\prime \prime}\end{array}$
Labgear

[^2]HIFIYEAR BOOK 1979

Our New Trio.

IPC Business Press Ltd
$\underset{\text { NAME }}{\text { (Dease print) }}$
(please print)

Hi-Fi Year Book is firmly established as the annual reference to just about everything the quality hi-fi market has to offer. The 979 edition is better than ever: over 450 pages of products
and photographs - separated into the major categories of equipment - giving you descriptions, prices, specifications, who makes it, where to buy it ... everything you need to know. And this information is backed by authoritative articles on the latest hi-fi developments and their
application. So if you want a reliable guide to the latest and best hi-fi products available, order your copy today because it sells out pretty quickly.
HI-FI YEAR BOOK
1979 Avilable direct from the publisherse $£ 3.50$. incusive

ORDER FORM To General Sales Manager, Room CP34, IPC Business Press Ltd
ORDER FORM To: General Sales Manager, Room CP34, IPC Busin
Dorset House.Stamford Street, London SE1 9LU.
Please send me_copy/copies of Hi-Fi Year Book 1979 © $£ 3.50$ a copy

ADDRESS
-
Registered in England No. 677128
Regisered Office Dorset House. Stamford Street. London SE1 9 LU

\square

FUTURE FILM DEVELOPMENTS 36/38 Lexington Street, London WIR 3HR Telephone Ol-437 1892/3 - Telex 21624 ALOFFD G
ww-036 FOR FURTHER DETAILS

Pt lust. DIU Ri Fi which lones 05 if it isn't

The PW Darthester•LU,IMU, 5W, \& FII stered tuner THE DIGITAL DORCHESTER ALL BAND TUNER

 and mone

2 Cresham Raud, Brentwaod, Es5RE.
ww 0 050 FOR FURTHER DETAILS

VORTEXION event... a new addition to our family of amplifiers. The VTN 30 . he new baby weighs in at 30 watts, and has a maximum of 3 The new
 The other members of the Vortexion family are the 2000 , $50 / 70$ watt and CP50 mains/battery amplifiers. 2000, $50 / 70$ watt and CP50 mains battery amplitien. Contact Jennifer Hall - VORTEXION DIVISION Clarke \& Smith Manufacturing Co. Ltd., Melbourne Works, Melbourne Road, Wallington, Surrey. Tel. $01-6694411$ Ext.
 38. Telex Casint G 22574; Telegrams: Electronic Wallington

WIRELESS WORLD. MARCH 1979

Ferranti Semiconductor Distributors Nationwide.

 Portsmouth
Tel: 07056531

Woolley
Woolley Components L Altrincham
Tel: $061-9411911$

Intel Electronics Ltc
Comway Electronics, Bracknell
Tel: 034424765

ITIT

ITT Electronic Ser
Harlow
Tel: 027926777
 W-038 FOR FURTHER DETAILS

At the end of the test session the communications engineer sang the praises of our filters.

"What performance" he said, referring to the

14 capability of the Barr \& Stroud EF3 Filter System in satisfying his signal conditioning needs. He and other engineers in many fields are equally complimentary about Custom-Built Filter Service.

We have fully descriptive literature which will enerate similar enthusiasm in yourself. Use the journal reply system or call us, Barr \& Stroud Limited (Detp. WW6). Melrose House, 4-6 Savile Row
London WIX 1AF. Telephone: 01-437 9652.
Telex: 261877.
EF3 Variable Filter System Designed on a modular basis to give flexibility in use and to match your budget. A plug-in system developed for use in labs., test departments, anywherer units can be used separately or combined to give a wide variety of functions from low-pass to band-separate.
The current pass-band capacity is from d.c. to 10 MHz .
Active Filter Modules
The ready-to-use convenience of small, encapsulated filter units, each with a basic
function. No filter knowledge required to function. No filter knowledge required to
set up for specific characteristic or cut-off frequency. These filters are equally suited to the one-off lab. application and the large quantity production requirement.
Available in low-pass, high-pass, universa Available in low-pass, high-pass, un
and notch designs with a range of cut-off frequencies and attenuation rates.

Custom-Built Filters

The basis of our filter activity, this service has
for 20 years provided solutions to customers 20 years provided solutions to customers
specific requirements. Based on in-house computer facilities and an extensive programme library we can design and
manufacture the filters not provided in our standard range.
Designs can be passive or active with cut-off rates up to several hundred to around 70 MHz .

Barr \& Stroud

 adds to your resourcesEditor:
TOM IVALL, M.I.E.R.E.
'Deputy Editor:
PHILIP DARINGTO Phone 01-261 8435

Technical Editor:

 GEOFFREY SHORTER, B.SCProjects Editor:
MIKE SAGIN
Phone: 01-261 8429
Communications Editor: Phone 01-261 8043

Orawing Office Manager ROGER GOODMAN
Production:
ALAN KERR
Advertisement Controller
Advertisement Manager:
BOB NIBBS
18622
DAVID DISLEY
Phone $01-261803$
Classified Manager
BRIAN DURRANT
Phone 01-261 8508 or 01-261 8423
BARRY LLARY / Class
Phone $01-2618508$
JOHN GIBBON (Make-up and copy)
JOHN GIBBON (Make-c.
Phone 01-261 8353
Publishing Director:

wireless world

Performing blights

It is not open to question that goods sold by retailers should be capable of are meant - they should be of "merchantable quality". Most people need no urging to insist that this law hould be observed; a faulty pair of shoes or a watch that gains or a ta returned whence they came and istant action demanded.
Usually, the fault is obvious: if a pair of shoes lets the water in, one can be easonably sure there is a hole in them
book with pages missing is an affront oo the eye and a bag of crisps containing nothing but little blue packets brooks no argument.
Times are changing rapidly, more so han ever before, and the words "high technology" are bandied about and "clever electronics". Domestic tape recorders, amplifiers and tuners are no in the same class as industrial equipment, computers and the lik when judged by the height of their
echnology, but on the domestic scene they are clever enough to be the least-understood kind of hardware eve found in the average person's home. Of course, radios and record players have been around for many years, but his mythical "average person") is to produce a large enough amount of mellow" music. Now, the possession f an array of satin chrome and teak, high-quality equipment comes a good when setting up house.
The choice of the equipment, when not made on appearance alone, is often rompted by the scanning of reviews in he magazines devoted to high-fidelity hem are. But an ominous note is sounded in many reviews seen in these magazines to the effect tha
adjustments have not been properly carried out by the makers drastically reducing the quality of reproduction and this is on equipment lent by makers, not bought in shops. On tape recorders, for example, head alignment is frequently a cause for complaint, as Dolby level adjustment.
It does not seem possible for most users to investigate the finer points of performance themselves, which means they are totally in the hands of the
maker/retailer organization. Since it would be unrealistic to suppose that, when sold, every single piece of equipment is at the peak of its potential, it must be assumed that there are instruments in service which
are not performing as well as they might, the reasons for which the user is at a loss to explain, even supposing he can detect the shortcomings. It would probably increase the price of equipment to an unacceptable leve
to expect that each instrument be subjected to a stringent examination of every facet of its specification, and since it seems probable that many purchasers would not be greatly upset instead of 58 dB , it would be unwarranted. But is there, perhaps, scope for specialist organizations to "breathe on" equipment, at a price, to capabilities? In an ideal world, this sort of thing would not be needed, but it seems to be an increasingly rare experience to buy a complicated object - a car, music-centre, house - and be performance. Exhortations from public to manufacturers appear to have negligible effect. It might be better and cheaper, of course, for the maker to do over completely: the maker couldn't then charge for work which hasn't been done.

Low-cost logic analyser

Simple, yet flexible design with discrete l.e.d. display

WIRELESS WORLD, MARCH 1979 micro
The sample channel can be. used to store and display any sequential inpu gnal by loading it into a 32 -bit serial The contents of the register can then be continuously displayed on an l.e.d matrix. When a trigger signal occurs he sample clock is inhibited and the display matrix indicates the states of the 32 previous input pulses. By using the domain rather than time-domain display can be generated which is ecessary when monitoring synchro ous logic.
hexadecimal comparator continuously compares the data-latch inputs with a hexadecimal code set on humbwheel switches. A true output is genèrated when the latch input code quals the hexadecimal code, and thi signal, or switched internally to the rigger input. Many microprocessors use hexadecimal coding for their machine code instructions, so the machine instruction and store data from, for example, a peripheral at a time related to that instruction. An input is rovided which can inhibit the compare output, during a change in state of the settled. . and sample channe The data latch and sample channel
can be individually controlled by the can be individually controlled by the
external trigger input which has a external trigger input which has a
separate logic threshold control, and separate logic threshold control, and riggering. The trigger signal is detected by a latch, and the state of the latch is isplayed by an l.e.d. which flashes when a correct trigger signal has been rigger latch control may also be derived from a delay counter which generates a signal a preselected time after the trigger latch has changed tate. This delay mode is useful because and post-trigger information to be stored by the data latch and sample channel. The delay is set by a 0 to 99 humbwheel switch, and is the humbwheel setting multiplied by the sample rate selection.

Circuit description

The main requirements for the input interface are that it should be high trol of the 0 to 1 to 0 transition threshold. The external sample-clock nput is similar, but with a preset tran sition threshold. It is also necessary fo the interface to accept both t.t.l. and Fig. 2 shows the SN2710 comparato which was chosen for its speed and its ability to drive t.t.t. This device does however, have a relatively high inpu current requisance. To overcome the in
Specification
Data inputs, sample channel and compare/inhibit input

Propagation delay for low to high	70 ns
Propagation delay for high to low	95 ns
Input resistance	$90 \mathrm{k} \Omega$
Transition threshold	1.5 to 10 V
Transition hysteresis	0.175 V
Maximum input	+1.2 V
Minimum input	-2 V

Minimum input
0.175 V
+1.2 V
Trigger input as above except for
Propagation delay from trigger signal to
disable
Transition thres
Delay mode
70 ns
Selectable from 0 to 99 times the selected clock period or external input period
Clock
Clock period selection
External input
Internal oscillator or external inp 20 ns to 20 ms
The same as data input except
herently low hysteresis of the compa rator, about 175 mV teresis is added by R_{3}.
A combination of input resistance and intrinsic shunt capacitance of the propagation delay, but this has been partly overcome by the addition of a speed-up capacitor C_{1}, which provides some input overdrive for each edge of the input waveform. The reference volfrom a common op-amp via separate source-impedance matching resistors. It is essential that a well-stabilized voltage is used for the variable ripple can cause incorrect transition switching.
Low power Schottky t.t.l. is used to limit the load on each comparator, and

Fig. 2. Interface comparator and threshold level controls. Resistor R_{3}
provides about 175 mV of feedback to increase the hysteresis.
to keep the total propagation delay to a minimum.
Trigger and delay
The trigger and delay circuit is shown in Fig. 3. The trigger channel is interfaced
with its own threshold control, and the signal is used to clock a D type flip-flop connected as a latch. The output of the latch is used to gate a low-frequency oscillator which dives the trigger indicator lamp and delay counter. As
shown, the latch can be reset using the clear input, and positive or negativeedge triggering is achieved via two inverters. Once the latch has been triggered, the CTL output goes high and
enables the two synchronous decade counters. The count is compared with the thumbwheel switch setting by exclusive-OR gates, and the gated outputs are decoded when the counter value reaches the required number. The
counters are then disabled by taking their inputs low. The delay and the CTL signals can both be used for switch selection to the sample channel and the
-
\pm

at the time of the transition. The latchenable signal is derived from the trigge section and a switch is provided to data-latch therefore has the ability to sample and freeze the state of the data inputs either at the time of a trigger signal occurring, or at a pre-determined time or operational por signal. By disabling the trigger input, the l.e.d. display can be used as 6 -bit real time logic indicator
The low output current capability of the 74LS series necessitates a lower l.e.d current in this case it is about 5.5 mA . However, this has proved to be quit acceptable. By using the Q latch outpu an l.e.d. that vice versa. The circuit has ogic 1 and vice versa. 16 bits of data, althuugh this can easily be expanded or reduced in blocks of four bits depending on the user's requirements. noted that extra contro will be required if further bits are added. The hexadecimal comparator section is shown in Fig. 6. The comparator continuously compares the logic state of the data inputs with a hexadecimalwheel switches. This signal can be used as a control for either external use or as a trigger command, and also as a signal to be displayed on the sample channel. The compare/inhibit input, which use

Fig. 7. Sample channel and display matrix. In the prototype, two spare NAND gates were used as inver
compare-output when taken high, and thus inhibits unwanted comparisons from the exclusive-OR gates. An open
collector output is taken to a front panel socket and also to a switch which can feed it to the trigger input.

Sample channel

The 32-bit sample-channel store uses four 8 -bit series shift-registers as shown in Fig. 7. Input data is presented to the shift register via an interface compa rator, and clocked through the registe On the positive edge of each contains the input logic states that appeared during the previous 32 clock periods. By disab ling the clock when a trigger signa occurs, the register will st revious 32 is of input data. The register contenty displayed on an l.e.d. matri as shown. The top row of the matrix represents logic 1 register bits, and the bottom row represents logic 0 . By usin ation of shift register and display forms a time or data domain storage channel which can be used for displaying one
shot pulses or pulse trains. Use of the trigger-delay mode enables the channel ofter the trigger signal. By delaying 16 sample clock periods, the first half of the display will show the state of the sample channel input for the 16 clock periond before the trigger signal, and the state of
half of the display will show the the input for the 16 periods after the trigger signal.
It is important to note that for an input pulse or change of state to be
clocked into the register, it must be clocked into theast one positive clock edge. For this reason, it is always advisable to have a clock sampling frequency of at least five times the expected frequency of the

New format for teaching electronics

Novatexts" are a breakaway from conventional textbooks

by Peter Williams Ph. D., Paisley College of Technology

Abstract

TEXTBOOKS HAVE NOT CHANGED their format in our generation - nor the format has been successful for so long that there have to be. Conventionally the work is divided into chapters of roughly equal length, each chapter dealing with a single subject. Within dealing with a single subject. Within each chapter there is a variety of information. In engineering and science at least four types are distinguishable: diagrams, figures and graphs; text, often describing the diagrams and matical material developing the theoretical background; examples either practical or numerical. The last ategory can be extended to include data on particular devices or systems, is possible without diminishing its importance to describe this section as "house-keeping", a collection of useful functions that vary from occasion to occasion, e.g. some chapters lend themoccasion, e.g. some chapters lend them- selves to worked examples, while others benefit from reference to manufacturers' data. On each subject the reader is pre sented with this range of information judgement. It is at this point that th approach can be challenged. It assume implicitly that each reader is in need of all the information all the time. In some cases certain sections are indicated a subsidiary to the main theme, but that all the types of information are necessary does not appear to be questioned. Consider the order in which the material is presented: the text introdiagram, a graph or a scale drawing Some aspect of the material is then analysed, perhaps with a worked xample and the text resumes. Th repeated throughout each chapter, the im being to provide a logical and coherent development of the whole subject at a level appropriate to the seaduent. The material is presented strained to follow that sequence if he or she is to benefit most from the efforts of he author. The proposition underlying the new pproach is simple: that at any given time the information needed by a reade is less than that presented by the at thor. (This does not conflict with the truism that the need is always more than any author can provide.) The pro position is that different types of infor users, and to the same users at various times. The following illustrations may help to make the case -a technician asked to produce a piec of test equipment would find a dia gram of a circuit or a scale-drawin helpful, particularly if backed up by worked example. -a student meeting a subject for the the principles well before the rigours of the mathematical analysis became important. during a second-level course the general principles should have bee key section though with reference to explanatory material to fill gaps in the memory. a working engineer coming on an unfamiliar topic would welcome a grammatic or graphical form; this would show the degree of relevance of the material and whether the text analysis merited further study. This is the case for the separation of abject into separate types of informa ways be done but that it is an alterntive of say diagrams, text analysis, examples. The weakness is that the physical separation onto different page akes it almost as difficult to find the ions referred to in the text. There ap pears to be no way of juggling the infor mation in a book to meet these require ments. This is because there is the idden and apparently reasonable the book needs a number of pages. To reader of this journal it will be clear tha the format allows a far greater amoun material on the page. As a rough 600 words depending on the type-size By comparison, a novel has about 220 to 300 words per page with comparable igures for many text books. This shows he intensive nature of the information vailable in an A4 journa fermat -

dated in less than 60 pages, which

 omparable to the editorial matter in The importance lies not for-money aspect but in the fact that ouble-page spread is equivalent to erhaps a dozen pages of conventiona hapter, and readily encompasses single opics within a longer chapter. The opic can now be presented at one sit ting as it were and the format chosen is shown on page 50 . The presentation is in that each of the four types of information appears sequentially but with the four streams of information in parallel. The first,time reader can scan e left-hand column and perceive th glance. Even before the details ar leaned from the text, the development of the ideas should be clear and th
'Different types of infor

 mation are appropriate to different users, and to the same users at various times.reader should know whether the tex meet his needs. Thus students, engin eers, teachers and technicians can select the types of information they eed in the most convenient order. Because the data streams are paralle
is easy to cross-refer from diagram to ext, to relate the analysis to the dia grams and so on without having to tur pages. To facilitate this a further con straint has been accepted: the text ha paragraphs of 150 to 250 words, with each paragraph related to the adjacen diagram. The diagrams, figures and graphs have been selected to assist this division. It is not thereby implied that al the attempt has been made to partitio the left-hand page into units o comparable length. This is neither pos ble nor desirable for the analysis, since ne diagram, while some diagrams may equire several equations.

Ramp, sawtooth and triangular wave generators, astables, monostables and pulse generators all depend on one simple fact: when a capacitor accumulates charge from some source of
current its voltage changes. Further, the rate at which the voltage changes is directly current its voltage changes. Further, the tate at whe the variety of these circuits and their applications
proportional to the magnitude of the current. proportionalitorat this common property. It is very helpful to return to the behaviour of a single
tends to obliterate capacitor connected to a current source, a resistor, or bofhr considering the many versions that and the departures from the ideal cen functions. A perfect current generator sustains a defined current into any load including that of a capacitor regarces the behaviour, of current sources most practical generators approximate to voltage sources, the betaviour,
may appear less obvious, and a formal restatement of this basic property helps to avoid may appear less obvious, and armal the property that charge and voltage are proportional, $\mathrm{Q}=\mathrm{CV}$.
confusion.) The capacito has the confusid.) that the capacitance C remains constant. Observing that current is the rate
provide the
charge then the relationship between current and rate-of-change of voltage follows.
charge then the relationship between current and rate-of-change of voltage follows.
If a capacitor is charged to a given voltage and then has a resistor placed in parallel with it, that charge is dissipated. The higher the terminal voltage the greater the initial current in steep at hence the rate at which the charge is lost. Hence the ste
first. progressively diminishing as the voltage falls. The voltage is asymptotic to zero and the - irst, progressively diminithing as the 'discharged' is thus arbitrary - for practical purposes,
point at which the capacior is said to be 'd a final voltage of $1-10 \%$ of the initial value might be used. (in some cases he presen constant-current term in the model of the active devices
genuinely passing through zero). The property that the rate-of-change of voltage is proportional genuinely passing throgh zero.
to the voltage itself leads to an exponential relationship between voltage and time. In this the
俍 resistor and capacitor always appear in the constant of that portion of the circuit. A complex $\tau=$ CR where τ is referred to as the time constant of that portion offects of each separately.
circuit has many time constants but it is often possible to evaluate the effer
The two previous voltage waveforms can now be joined together to provide a pattern that if epeated continuously is described as a saw tooth waveform. It consists of a linear slope or ramp dilowed by a rapid, but not necessarily linear, return to zero or some very low value. A single cycle of this waveform can be obtained by switching the capacitor from the curtert gime, and by nalogy with a short-circuited voltage generator this state of afairs can be seen as undesirable. As the discharge is required to be very rapid the current flow in the resistor is much greater than that from the source and it is more usual to leave the current generator this is no grea the minimum value of the final outpution form, consisting only of a single-pole switch. If the disadvantage. The switching is simple intants the generator is said to be triggered and such
switch is operated at pre-determined instirchit can ramp-generator is the basis of oscilliscope time-bases. Alternatively, a level-sensing circuit can be use
mode).
No perfect current generator exists, and the imperfection is most often that of che input
parallei resistance. This includes any leake resistance of the capacito and the parallel resistance. This includes any leakage resistance of the capacior and erator. The
resistance of the following stage, as well as the finite output resistance of the genere resistante of the resistor is still much less than that from the generator if the circuit is to have any
current in the pretence of being a ramp generator, but the gap progresively closes as the output volage
increases. Hence the output departs from the ideal linear ramp. The error can be calculated increases. Hence the output departs from the ideal inear ramp. The error can be cai ierms
either in terms of the difference between the actual and ideal voltages an any instant or in ter either in terms of the difference between the accual and a calculation is often to compare the
of the difference in the slopes. As the purpose of such a relative meritis of different arrangements it matters little which is used; the stope erroris easier
calculate and is used in the following section. The actual error is usually obtained by expanding calculute and is used in the following section. The actual error is usually obtained by expanding
the exponential equation and taking account of the low-order terms in the expansion. In circuits the exponential equation and taking account off he low-orde forre gains are shown to be equivalent
involving active devices, the effect of finite voltage and current involving actil to additional resitive losses:
A practical and widely-used form of sawtooth generator uses an operational amplifier. Thé configuration is that of an inverting integrator, and with a constant input voltage, the current in R is constant, assuming a true virtual earth corresponding to infinite voltage gain. Departures from this assumed condition are discussed later. The input courrent It may be either positive or
finite, small and almost independent of the signal condition. finite, smative depending on whether npn or pnp transistors form the input stages. This currenteither
negative increases or decreases the capacitor current by a smal but constan input devices modifies the linear but with a slightly modififed slope. Any volage onfset of the ne the the stage results in a
voltage across R , providing a similar slope error. The inverting nature of thel voliage activess output ramp for a positive input voltage. It is the virtual earth beraviou a
negativegoing out regulting from the very large voltage gain that allows the constant input voltage to produce a
proportional and constant charging current. It also allows the output voltage to be nearly equal proportional and constant charging current. It also allows the output voltage to be nearly equal
to the capacitor voltage while the output can be loaded without any significant change in the capacitor current.

THEORY

The voltage built up across a capacitor when charged from a onstant-current source follows from the basic relations
$\mathrm{Q}=\mathrm{CV}$
$\frac{d V}{d t}=\frac{1}{C} \frac{d Q}{d t}=$
.

$$
\text { and } V=\int_{t}^{\frac{1}{2}} \frac{1}{C} d t
$$

For I constant, and V_{1} the initial value of V
$\mathrm{V}=\frac{1}{\mathrm{C}}\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right)+\mathrm{V}_{1}$
In many practical circuits the initial voltage across the capacitor is zero $V=1 t$
The discharge cycle would be similar, with a constant current discharge; in most cases the discharge is through a resistor. Let the
initial voltage be V , with the current flowing into the capacitor still I

$$
\frac{d V}{d t}=\frac{1}{C}=-\frac{V}{C R}
$$

For convenience write $C R=\tau$ the time-constant of the $C R$ network $\frac{d V}{d t}=-\frac{V}{\tau}$
Hence $V=V, \exp -t / \tau$
with $V \rightarrow V$, for $t \rightarrow 0$
and $V \rightarrow 0$ for $t \rightarrow \infty$

There are two conditions of interest in which both resistive and constant current terms are present. In the first, the resistor switched constant current terms are presenc.
into the circuit to discharge the capacitor is normally so low that the
constant constant current has a negligible effect on the
discharge. It limits the absolute lowest output to IR.

The second condition considers the effect of stray leakage or load
Then $\frac{d V}{d t}=--\frac{V}{\tau}+\frac{1}{c}=\frac{1}{c}(1-V / R)$
The slope departs from the original value of $1 / C$ more and more as V increases, with a frecere erical maximum voltage output if all the $\mathrm{V} / \mathrm{V}_{\text {max }}$ where ${ }^{\text {maxam }}$ is the theoreical maximum vilage output in all the current
were carried out by converting into the corresponding voltage generator
form and treating it as a standard RC timing circuit with a corres. ponding large drive voltage (IR), with the output as only a small portion at the bottom of the experimental charging cycle.

The information can be applied to the op amp sawtooth generato shown. To a first order for high-gain op.amps, the capacitor curren depends on V / R and the input bias current. The latter is independen of the output voltage to a first order i.e. modifies the output slope to b
proportional to $(V / R-1$ ber without disturbing the linearity

EXAMPLES

1. An operational amplifier has a compensating capacitor of 30 pF into
which its first stage can deliver a maximum current of which its first stage can deliver a maximum current of $\pm 20 \mu \mathrm{~A}$
Calculate the slew rate i.e. the maximum rate-of-change of across the capacitor
$\frac{d V_{c}}{d t}=\frac{d(Q / C)}{d t}=\frac{1}{C} \frac{d Q}{d t}=\frac{1}{C}$
$\frac{d V_{c}}{d t_{\text {max }}}=\frac{I_{\text {max }}}{C}=\frac{20,10^{-6}}{30.10^{-12}} \mathrm{~V} / \mathrm{s}$
$=0.67 \times 10^{-6} \mathrm{~V}$
$=0.67 \mathrm{~V} / \mu \mathrm{s}$
2. An amplifier is loaded by a stray capacitance of 10 pF and is to reproduce 10 V peak-peak square-waves at a 10 MHz clock-rate. What
should the peak current-capability of the amplifier be if the rising and falling edges a current-capability of the amplifier be, if the rising and

$t_{r}+t_{r}<\frac{100 \text { ns }^{10}}{10}$
i.e. $\mathrm{t}_{\mathrm{t}}=\mathrm{t}_{\mathrm{t}}<5$ ns

As before $\frac{\mathrm{dV}}{\mathrm{dt}_{\text {max }}}=\frac{\mathrm{I}_{\text {max }}}{\mathrm{C}}$
$\frac{10 \mathrm{~V}}{5 \mathrm{~ns}}=\frac{1}{10 \mathrm{pF}}$
$I_{\text {max }}=\frac{10 \times 10 \times 10^{-12}}{5 \times 10^{-9}}=20 \times 10^{-3} \mathrm{~A}$
Hence the amplifier output current must be at least 20 mA .
3. A 1 mF capacitor in a full-wave rectifier power supply is charged to a
peak voltage of 18 V . If the voltage is to decay by $<1 \mathrm{~V}$ bet peak voltage of 8. . If the voltage is to decay by $<1 V$ between
successive peaks, estimate the minimum value of load resistance that can be used (i) using the exponential decay equations; (ii) by the approximate method of assuming the discharge current is constant a its peak value. Assume mains frequency 50 Hz .
(a) Capacitor discharges almost for a half cycle i.e. $\approx 10 \mathrm{~ms}$

$17=18 \exp \left(-10^{-2} / R \times 10^{-3}\right.$
$\frac{10}{\mathrm{R}}=\ln \left(\frac{18}{17}\right)$
$R=175 \Omega$
(b) For linear decay $1 \approx 18 / \mathrm{R}$
$\Delta v=1 V$
$j v=\frac{1}{c}$
$\frac{1}{10^{-2}}=\frac{18}{\mathrm{R} \cdot 10^{-3}}$
$R \approx 180 \Omega$.

Sun-spots, sweepers

and buried clocks

and buried clocks Although the approaching sun-spot
peak is clearly going to be a high one, it peak is clearly going to be a high one the
now seems that it may not reach the now seems tigures (over 200) predicted a few months ago: the sudden "recession" last summer seems to have had a lasting effect. Neverthelass, high frequencies
50 MHz and similarly hit producing long-distance contacts are good. A series of s.s.b. /c.w. contacts between KH6EQI in Hawaii and a number of Australian stations time in 20 years.
20 years.
Martin Harrison, G3USF, recently appealed for co-operation from British amateurs in collating more informationon "sweepers and creepers, that sweep across finite bands of frequencies (often in the region 20 to 30 MHz but sometimes much lower). Ted Cook, ZS6BT in Johannesburg, to me a tape has recently froviding many excellent examples of these curious and distinctive signals. So far, although a number of theories have been tentatively put forward, there is no phenomena, first observed by Gerson and Gossard in 1958 (see WoAR, February 1978).
R. H. Dicke of Princeton University has recently put forward the idea that
despite the apparently large and randospite variations in the periodicity of the sunspot cycles (cycles varying from 7.3 to 17.1 years have been recorded) the Sun appears to have the ability to "remember" and re-adjusima - almost rect spacing betw were an accurate chro-
as though there as though thered deep in the Sun. His explanation for the apparent variations is that the transport of the magnetic field from requires a long time and is subject to irregularities.

Band plan problems

The system of voluntary band-planning, introduced into Europe by the RSGB some 30 years ago and subsequently endorsed by the International Amateur Radio Union, has iong, if not essential,
as a highly desirable, as a highly opeparating non-compatible transmission modes, However the increasing number of modes and. specialised commown when the system (virtuas set up) is making it difficult to modify and extend band planning so that it satisfies everybody. One finds, for example, grumbles with the present
situation on the popular 144 MHz band. situation on the peeking specifically a.m.
Some users are as well as n.b.f.m. "channels" and there have been problems with overlapping
"satellite" and "emergency" alloca-

tions. A major problem is that frequent modifications to a v.h.f. band-plan can prove costly for stations not using
frequency-synthesizer techniques owing to the cost of new crystals. Then again, on h.f. most r.t.t.y.,' operation is within the "telegraphy" sections of the various bands, though this does not seem to have been recog-
nised by the writers (G3VYV, G8IAT and G4GQO) of the "Letter to the Editor" in the January issue who were apparently "stunned" by my suggestion that this mode can (and does) have high interference-potenthis referred to those using manual telegraphy, where one would find it extremely difficult to "notch out" an r.t.t.y. transmission, transmissions.

From all quarters

One of the less desirable aspects of amateur radio is that it seems to make unwanted "chain letters" promising to bring in thousands of dollars to those, foolish enough to send money then forward copies of the letter to about 20 other people. A reader sent me (for inspection I hasten to say) a recent copy of one of these pests with their appeals or warnings a more appropriate.
more appropriate.
Special event callsigns in the series GB2, GB3 or GB8 plus two or three letters are available through the RSGB
provided that application is made at provided one month before the event. However, once a particular callsign has been alotted to a group, the same call will no be issued to another group for a dif ferent event. The special the Isle of Man being authorised during the June 30 and July 8 (inclusive). Normal prefix for the Isle of Man is "GD.
The Japanese scientists - M. Morimoto, H. Horabed out that if in-
elligent civilisations are common throughout the Galaxy, they must have formed a community using communication and must be sending radio beacon signals. They suggest it is likely
sible to specify not only the most likely frequency on which to listen $(4829.659 \mathrm{MHz}$, the spectral line of formaldehyde) but also the directions to be searched.
The Swedish farmer-amateur LarsErik Johansson, SM4AQL keeps his
station on the air (and his farm running) station on the air (and his farm running) from an ambitious cow-powered methane digester cum electric generotor. The reactor, at any one time,
tains some 22,000 gallons of slurry formed from the output of 50 cows and 40 heifers, providing 4,000 litres of fresh slurry daily and producing some 70 cubic metres of methane gas each day.
While a number of amateurs have been puzzled at why some Japanesemade amateur radio equipment seems to sell at relatively much lower prices in the U.S.A. than in the UK, rather fewer (Rev G.C. Dobse is an exception) have remarked on the extraordinary difference between what the Post Office now charges for International Reply Coupons (25 p each) and what it is pre pared to give for them.
out that amateurs using s.s.b. rigs for r.t.t.y. often have power amplifiers working at well under 50 per cent efficiency and that even the old and
often discarded a.m./c.w. rigs have uses often discarded a.m. c.w. rigs their Class
other than as boat anchors: other than as blifiers and large power
C power amplen units designed for high duty cycles can provide potent r.t.t.y. signals.

In brief

Application has been made for the operation of the first two 24 GHz beacon stations on the Isle of Wight and Alderney ... National events announced VHF Convention at The Winning Post, Twickenham, Middlx; May 11-12, RSGB Amateur Radio Exhibition, Alexandra Palace, London; August 5, National Mobile Rally, Woburn Park; September
RSGB H.F. Convention 15 RSGB H.F. R. Convention, Bism V.H.F. Convention, Dundee . . . Bert Mathews, G6QM of Cheltenham has died - he was a sub-manager of the RSGB QSL Bureau for over 30 years... Denis Campbell, G13TAC, a radio and
electronics officer aboard the cable ship "Mercury" has been keeping a daily schedule from the Bermuda area with
his father, G130LJ ... North Midlands Mobile Rally, organised jointly by The Midland Amateur Radio Society and
Stoke-on-Trent Amateur Radio Society will take place on Sunday, April 29 at Drayton Manor Park, near Tamworth PAT HAWKER, G3VA

Electronic organ tone system - 5

Vibrato, noise, expression pedals and stop control
by A. D. Ryder, M.A., Ph.D., F.I.E.E.

This article completes the section on tonal variations, and concludes describing further optional additions together with some general notes.
MODIFIED FILTERING may also be useful with cross-keyed ranks (see bere available.
For use with modified filtering, the harmonic content of the SQB signa may be increased by combining ctavely-related divider outputs to prosignal for gating. It is preferably to use OR or NAND functions rather than heir inversions to minimise the d.c. component. For example, the NAND of $65.4,131$ and 262 Hz provides a $1: 7$ pulse the first 16 harmonics are listed in table 12 with a saw-tooth for comparison. Because the third harmonic of F1, for example, is nearly equal in frequency to ${ }_{3}$ with accurate equal temperament, a $3 / 4 \mathrm{FI}$, for $\mathrm{C1}, 3 / 4 \mathrm{~F}^{\prime} 1$ for $\mathrm{C}^{\prime} 1$ and so on, which contrasts usefully with intune stops. This requires keying signals KB in Fig. 14 to be cross-linked (or Keparately generated). For example, the 65.40 Hz , must drive a gate on the F card supplied from the $1.5 f_{0}$ divider output a 65.48 Hz , and so on with these gates eeding a separate set of buses. A simi harmonic where the much larger requency difference produces noticeable beats similar to a celeste. The owest note of a celeste rank is usually tenor C , and the appropriate frequency 3 shows the linking pattern for both arrangements. The same principle could be applied using the 7th and 9th armonics to create larger frequencydifferences. To provide the necessary 47 would be $12 f_{0}$ or $24 f$, with p..1.1. circuit components modified accordingly.
As the ear is insensitive to pitch at

Table 13 Third and fitth harmonic cross-keying. The table shows manual frequencies for

high frequencies, the 8th harmonic signal may be extended beyond EK5 by using 6th harmonic frequencies and so on. This is equivalent to the breaking back of a mixture. The transistor gate in
Fig. 13 can function as a mixer because of the low input resistance at the base, but its usefulness is limited to octave combinations due to transient effects during keying. To build up a mixture rank, separate gates are preferable
although they may use a common SOB set and filter. For comprehensive mixtures, it is necessary to expand to two sets of cards

Fig. 48. Low impedance sinewave source for vibrato. The potentiometer may be remotely mounted and connected with twisted wire.

Vibrato

The term vibrato is used here for frequency modulation at 4 to 8 Hz with a semitone, 100 cents, though much smaller amplitudes, down to five cents or less, are useful. Sinusoidal modulaAs noted in pable for large amplitudes directly to the gate-card generators and, if a common signal is used, normal
vibrato is produced. A 100 cent swing vibrato is produced. A 100 cent swing
requires about 0.7 V r.m.s. at the vibrato inputs. The use of independent signals is considered in the next section. Fig. 48 shows a low impedance sinewave source suitable for normal vibrato. In the trigger circuit, R_{1} or R_{2} may be
trimmed for an equal mark-to-space ratio at A, i.e., for minimum second harmonic. Resistor R_{3} or C_{1} sets the

54
requency range of the control, which may be remotely mounted using twisted wire. The output level may be increased up to about 2.5 V r.m.s. by reducing C_{2}. affect all three departments and all frequencies. Vibrato to an individual department offers more flexibility, and helps a solo stop, for example, to stand sider the h.f. channels only, because a pipe organ vibrato or tremulant has little effect on the bass pipes. Frequency modulation can be achieved by passing the signal through a bucket-brigade delay device, such as the Mullard TDA
1022 or Reticon SAD 1024, and modulating the clock frequency. The phase \varnothing of the output, relative to the input, depends on the line delay D, and because the frequency corresporis to $\mathrm{dD} / \mathrm{dt}$. For sinusoidal modulation, the peak frequency deviations occur at the zeros of the modulating signal, where
its slope is a maximum, and so have an amplitude proportional to both the modulation. Also, because D is a number of clock periods, e.g. 256 periods, it is the clock period rather than its frequency which should be linear
related to the modulating signal. related to the modulating signal.
The circuit in Fig. 49 shows a period modulated oscillator based on Circard 15-16, with a current mirror for constant-current charging of the 470 p timing capacitor. The necessary lowimpedance drive to pin 5 , and has a gain inversely proportional to frequency so that the peak $d D / d t$, and thus the signal frequency deviation, is independent of the modularions are greatest at low modulating frequencies, and the working point of pin 5 is set by the $7 \mathrm{k} 5 / 8 \mathrm{k} 2$ divider to maximise the linear range. The adjustment can be trimmed by
using a p.1.1. with a suitably short loop using a p.1.1. with a suitably short loop

Fig 49. Period-modulated oscillator. The oscillator frequency is controlled by the

Fig. 50. P.r.b.s. generator with additional output. The capacitance coupling avoids Fig. 50. P.r.b.s. generator with additional output.
persistence of the all-zeros condition. The output network shown at B is repeated for outputs A, C and D. modulation waveform, and with a signal of say 8 kHz as a carrier. The oscillator frequency is controlled by the
voltage at pin 5 and R_{1}, C_{1}. The 6 k 8 voltage at pin 5 and R_{1}, C_{1}. The 6k8
resistor reduces the charging time of resistor reduces the charging time of
the input blocking capacitor at switchon.
on.
Bucket-brigade devices need twophase clock signals, and manufacturers
data sheets show suitable circuits for deriving these from an input of twice the required clock frequency. The circuit values in Fig. 49 are for a 100 kHz clock, which requires the oscillator to delay of 256 clock periods, the required modulation input is then about 1 V r.m.s. for 50 cents pk-to-pk f.m. Deeper modulation up to about 100 cents can be used, but the low-frequency limit is 4 Hz 5 Hz at this level. Ale excursions, a relatively high clock frequency minimises a.f. noise from the device, and raises the frequencies of spurious output signals, so that a second-order out-
put filter with a corner frequency of put filter with a corner frequency of
12 kHz is satisfactory. Care should be taken to set the signal input bias to the centre of the linear range, and r.f. bypassing at the input may also help to reduce noise.
In general, organ pipe harmonics fluctuate in phase with respect to the
fundamental, and this effect can be simulated using a modulated and an un-modulated channel with a passive 6 $\mathrm{dB} /$ octave crossover at say 1 kHz , so
that the modulated channel prethat the madulated Separate speakers allow reflected sound to smooth out the comb-like frequency response which is produced if a delayed and undelayed
channel are mixed electronically. channel are mixed electronically.
Various other effects are possible by cyclic variation of channel gain, etc.

Noise: quasi-chorus

A pseudo-random binary sequence (p.r.b.s.) noise generator with a cycle length of $2^{18}-1$, approximately 262, clock
shown in Fig. 50 . Using a coll frequency of about 30 kHz , the signal at any output is substantially uniform over the a.f. range, and the periodicity of about $81 / 2$ is unnoticeable. The clock by using a division of 32 , or from pin 3 of the 240 divider in Fig. 37 , about 29 kHz . A noise-jitter chorus effect can be produced by applying band-limited noise, signals to the gate-card vibrato inputs, and the chifted versions of the p.r.b.s., each of which may be used to modulate three adjacent semitones. The network shown at D has a 3 dB frequency of about 100 Hz , and also sets the mean
level at E to +2 V , which avoids tranlevel at E to +2 V , which avide switch
sient frequency shifts when the swith is operated.
For use as a noise bus for mixing into stop combinations, the p.r.b.s. signal needs to be gated, by key operaty
with an amplitude following roughly an
mikeless worlo. march 1979
r.m.s. characteristic. Fig. 51 shows a basic circuit where Tr_{2} corresponds to noise gate is an inverted form of those in Fig. 13. Again, the time-shifted outputs of Fig. 50 can provide substantially uncorrelated signals for different stops or departments.
Expression pedals and amplitude

modulation

The usual pipe organ expression pedal, which controls the swell department than if the whole organ were enclosed in a swell-box, and this arrangement can
be adopted with the present design, with pedals for the other departments if required. A wide-range pedal is hard to control musically, and 15 or 20 dB is about right. The MC3340P electronic attenuator can provide a simple noise-
free control and although it introduces some low-order distortion at higher attenuations, this is not a serious drawback. The main difficulty is in the caling, and each device needs inbasic connections. The gain depends on the pin 2 voltage, and is controllable by an external resistance R_{c}. The gain reaches a maximum of about $\times 4$ when R_{c} is zero. If thin varies more or less linearly with R gain varies more or less linearly with R_{c}
between about $-6 \mathrm{~dB},\left(R_{c}=R_{6}\right)$ and -26 $\mathrm{dB},\left(R_{c}=\mathrm{R}_{26}\right)$. These two values must be found by trial, and also the open-circuit voltage E at pin 2 , and R_{e}, the value of R_{c} which pulls down the pin 2 voltage to
$E / 2$. Typical values are $R_{6}=7 \mathrm{k} \Omega$, $\mathrm{R}_{26}=12 \mathrm{k} \Omega, E=5.3 \mathrm{~V}, R_{\mathrm{e}}=4.7 \mathrm{k} \Omega$. Resistance R_{c} can consist of a fixed $7 \mathrm{k} \Omega$ resistor in series with a $5 \mathrm{k} \Omega$ variable which is controlled by the pedal. In practice, however, the choice of pedal resistor is linkage with an approximately linear action over an arc of 90°. This operates a wire-wound variable resistor which gives, for example, a swing R_{V} of 3.3 k
with a $10 \mathrm{k} \Omega$ variable resistor In it is necessary to scale down the effective value of R_{e} and hence R_{6} and R_{29} to suit the availabile R, by a factor s, which in this case is $3.3 / 5.0$ or 0.66 . Fig. 54 shows two additional resistors R , and
R , which are used for this purpose. Assuming a 12 V supply, the values are.

$$
\begin{aligned}
& s=\frac{R_{\mathrm{v}}}{R_{6}-R_{26}}, R_{\mathrm{f}}=s . R_{6} \\
& R_{\mathrm{a}}=\frac{12 \cdot s \cdot R_{\mathrm{e}}}{E(1-s)}, R_{\mathrm{b}}=\frac{E \cdot R_{\mathrm{a}}}{(12-E)}
\end{aligned}
$$

For a 15 dB range. R_{21} is measured and used in place of R_{26}.
The MC3340P The MC3340P may also be used for applying the modulation to pin 2. However, if an expression pedal is used as well, the modulation sensitivity necessarily varies with the pedal setting. To
compensate for this, C_{1} is increased to say $47 \mu \mathrm{~F}$ to have a dominatingly low reactance. The modulation is applied to

Fig. 51. Basic noise gating. The current i_{k} is proportional to the number of keys operated, and the noise output amplitude is required to vary as $\sqrt{i_{k^{\prime}}}$

Fig. 52. Basic electronic attenuator. The figures in brackets show open-circuit d.c. yoltages and internal restistances.

he general-cancel piston activates all three.
The main purpose of magnetically operated or motorised tabs is to permit them to be controlled in combination by pistons (buttons) arranged for thumb
foot operation, and the automatic movement of the tabs keeps the player informed. The circuit in Fig. 56 permits the same T line to be used for both stop and tab control because a momentary
connection of T to +12 V will operate the tab, and a momentary ground will release it.
The 4036 memory can be used in a simple parallel configuration to store
and execute combinations, and a small battery allows them to be retained with the mains power off. The 4036 stores four words of 8 -bits, and this description assumes that 16 -bits (stops, couplers, etc.) are used per department,
and that it is required to store eight and that it is required to store eight selectable by departmental pistons, c.p., and four by general pistons, g.p., which control all departments at once, using 12 packages in all. Couplers are included
because of their tonal importance in the present design, although this is not universal practice.
Each combination is stored, or changed, by capture. It is set up
manually on the tabs, and then allomated to a particular c.p. or g.p. by holding in that piston while simultaneously operating a separate capture button. This results in a write operation at the corresponding memory address.
Fig 57 shows one 4036 package, and the interconnection of four to produce 16 output lines. These are connected to the T lines of the department tabs, and two select lines, $\mathrm{Hl}-4$ (packages 11, 21) and H5-8 (packages 12,22) which are in common address lines A and B. As Fig. 58 shows, the addresses are allocated to the c.p., B high, and g.p., B low, in two groups of four.
The memory control is shown in Fl 59. With no piston operated, lines
high, W and Y, low, are inactive and the M outputs take the potential of their T lines. Operation of a piston generates memory address/select, and simul 4093 sections, which cause the address contents to be read onto the T lines, and drive them high or low to set the tabs accordingly. Holding in a capture button sets Y high, and prevents a subsequent J low from caustead, operation of a piston then switches all four 4093 sections, and the high or low states of the T lines are written into the address from the inputs because the outputs remainger action
The c.r. couplings and trigger The c.r. coupings the write pulse until the address lines are stable, and ensure that it terminates before the piston is released. The 4093 devices are supplied from the battery so that the memory output
float. J high, with power off, and the T lines do not draw current. Battery drain

WIRELESS WORLD. MARCH 1979

Fig. 58. Addressing for swell department. The other departments are similar, with
common connections to the general pistons.

Fig. 59. Memory control for the swell department.

Fig. 61. Tab control by the toggle circuit. Components.
omitted from Fig. 60 :

$\stackrel{4}{\text { Fig. }}$

is only nanoamps, and the smallest cel size is suitable.
The two or three most used couplers available also from reversible pistons r.p., push-on, push-off. This functio requires some form of toggle or divide by-two circuit. For example, a flip-flop clean signal from the piston contacts. The circuit in Fig. 60, however, is more conomical. A counter cell must have four distinct states, which requires two memories, A and B, and if p is the signa to be counted, the basic logic is,
$A=p \cdot \bar{B}+p . A \quad B=\bar{p} A+p . B$
In package counters, switching race are controlled by additional gates. In Fig. 60, which is a manipulation of the basic logic to minimise the package lays. These delays also permit the latching action to be slowed sufficiently to immunise the toggle from contac bounce and interference. This allow direct connection to the r.p.
feedback path from A to a is arrang via the tab itself, which provides a delay, as shown in Fig. 61, and two connections are brought back from the tab unit. Manual tab operation, or a
pulse from the memory, leaves the toggle appropriately set so that a sub sequent r.p. actuation produces the expected result.

Acknowledgement

The advice on tonal variations given by Mr E. L. Jones of Hiykon Ltd is grate-
fully acknowledged fully acknowledged, and the p.r.b.s
configuration of Fig. 50 is also due to him.

A 30 min cassette recording of the prototype is available for $£ 2.00$ c.w.o . A set of 15 special printed circuit boards $£ 117.32$ c.w.o. Both items are post free in the UK, and delivery is about 2 weeks and 4 weeks respectively.
Purchasers of these will also receive supplementary component and pro-
curement details. Hiykon Ltd, Woodside Croft; Ladybridge Lane, Heaton, Bolton, BL1 5ED

CIRCUIT IDEAS

Computer buses

Read/write control and contention for possession of the bus
by Ian H. Witten, M.A., M.Sc., Ph.D., M.I.E.E.
Department of Electrical Engineering Science, University of Essex

N THE EXAMPLES quoted, device has sent data to device 2 . Suppose tha device 2 is the processor and device 1 store. Since phe word of data, it will respond to several different combinations of address lines, each of which combinations addresses a certain loca tion of the store. Typically, there 16 address ${ }^{2}$ may have 2^{12} locations, each holding one byte of data. So 12 of the 16 lines are used to select the location within the store, and the other 4 address the
storage device itself. Thus, device 2 will storage device isself. ads, range, say $<0010000000000000>$ to $<001011111111111>$. This presents no problems with address decoding. The processor, device 1 , also needs to be able to read from the store, device 2 . data transfer, but the transfer is in the other direction - from the store to the processor.

There are two relationships here: the master/slave relation between devices 1 relation. Device 1 is the master in all the cases so far considered, since it initiates the bus activity; and device 2 is the slave. In the case of data being sen the transmitter and the latter the receiver, whereas in reading from device 2 into device 1 these roles ar reversed, without affecting the master lave relationship.
The choice between reading and writing is accomplished simply by add which is held low by device 1 for readin and high for writing, as in Fig. 19 If only one device can ever initiate
transfers along the bus - in the sens that a processor can initiate reading or writing from a store, but a store canno itself initiate these operations - we now have all the control lines that arel deevices that can initiate bus activity, for example, several processors, some interesting problems arise

Bus contention

Bus contention
At any time, only one device must be capable of initiating transfers on the bus. This device is called the bus master.

Dota $\frac{\text { adaress valid }}{\text { lines }}$ Control $\frac{\text { data occepted }}{\text { read /write }}$
Fig. 19. Asynchronous bus, without contention.
Address vali
Data accep
Read witit
Bus busy
Bus reque
Bus busy
Bus request
Fig. 20. Bus control lines
masters (imagine several processors on the same bus), there must be some
protocol for passing mastership from one to the other as needed. For example, in the absence of the dashed line in Fig. 1, the processor is the only potential bus master. The dashed
line introduces the possibility of a line introduces initiated by an input/ output interface, and the interface in question will therefore be a potential bus master. Table 1 summarizes which devices are potential masters.
The ideal bus structure is one where every potential master uses the same protocol to communicate with other devices, and none is in overall charge.
This increases the reliability of the sys-

Fig. 21. Daisy-chaining of the "bus Fig. 21. Daiss
grant" line.

does so by asserting "bus busy". This by for transferring ma adequate protocol unately, it is not If two but, unforsimultaneously assert "bus busy", they will each think they have the bus to themselves, resulting in collisions. Hence there must be a protocol for requesting bus mastership, and having
it granted by a central authority - the it granted by a central authority - the
bus controller. A "bus request" and a "bus grant" line are introduced for this purpose. The controller monitors "bus busy" and "bus request", and issues grants when appropriate. Fig. 20 show However, the "bus
described does not completely solve the problem. Each device requesting the bus will see the grant line being asserted, and each will think that it is now chain" the "bus grant" line through the devices, as in Fig. 21. A device, seeing bus grant", will only pass the signal on o the next device if it itself does no priority over all other devices which are urther away from the controller than it, when contention occurs.
Fig. 21 also shows the circuitry which device wants dasy-chaining. When a "bus requested" signal high signalling request on the "bus request" line. Note hat this line cannot be tri-state, since here is no way of preventing simul ne tri-state gate cannot actively drive the same line at the same time. It is the only bus line we have introduced that ust be wired-AND, and an open ollector gate is shown ariving at low to ignal a request. If the "grant in" line is

unit.

asserted, it is routed through the "grant out" line provided the bus has not been requested. If it has, the grant chain i ship.
A summary of for a device to gain and relinquish bus mastership is given in Fi inquish bus the bus is used for a single "send" operation during mastership. Although the protocol is quite complicated, we
have seen how each step is necessary if the bus is to perform its job correctly.

Bus arbitration. An alternative to daisy-chaining the "bus grant" signal is to have separate bus request" and "bus grant" lines for each device, as shown in bus controller can select one of the

Fig. 22. Protocol for gaining bus mastership and sending data.

contending devices and give it alone mastership by asserting its grant line. In this case, the controller is in a position to impose a priority structure on devices using programmed priority levels, and
often called a bus arbitration unit. The disadvantage of bus arbitration is that the number of lines increases by two for each device added. However, the delays inevitably associated with a long daisy-chain are avoided. In prac-
tice a compromise solution is sometimes adopted, with say 8 priority levels, 8 "bus request" and "bus grant" lines, and several devices daisy-chained within

Distributed buses. In general, if several identical autonomous devices are connected to a single bus, in a system with no protocol, bus controller or arbitration unit, there is no way of guaran-
teeing that two or more of them do not try to use it at the same time. However, if such "collisions" can be detected, it is possible to devise protocols for retransmission which ensure that the Although it shrough eventually. detect collisions by looking for the neither-high-nor-low logic level that occurs when two tri-state gates, both enabled, are fighting for the bus, in practice distrisul buses usually use been considered as a parallel collection of wires, where the address, data and control information is presented in parallel, one wire for each bit of the re expensive, it is more attractive to use one line only for the information, and transmit the bits one after another on this one wire. This is the case, for example, when radio is used as the bus requires 32 different radio frequencies to be reserved for the bus, and radio. bandwidth is a scarce resource. (The cost of duplicating the radio receiver connected to the bus is not negligible ither! To detect collisions using serial ransmission, some error-checking in ormation is sent with the data. Fo mission twice, and the receiver could check that they were the same. It is
extremely unlikely that in the event of a collision when two transmitters are
driving the bus simultaneously, the duplicate versions will check correctly. In fact, there are much more economical collision-detection nechanisms not be concerned with them here: the principle is enough. When a receiver sees a transmission addressed to it, it sends a "data accepted or acknowleoge message. However, if a colssion is corupted, it remains silent. If the sender has not received acknowledgement of his transmission after a reasonable time, he should assume that it has colided and re-transmit it. However, if, iwo important that they should not time out after exactly the same interval and collide when sending again, and so

The author
lan H. Witten graduated with a B.A. in
俍 mathematics from ane M.Sc. in computing bridge, Englam, University of Calgary,
scien the Uni Canada, and a Ph.D. in electrical en-
gineering science from the University of gineering science from the University of
Essex, England. He was a Commonwealth Essex, England. He wasa
Scholar at Calgary during 1969-1970 and has been a lecturer in the Department
of Electrical Engineering Science at Essex of Electrical Engineering Science at Essex
University since then. University since then.
His research interests span the field of man-machine systems: he has specialized
in the fundamental problems of machine in the fundamental problems of machine
learning, and in computational phonetics - the science of speech synthesis by computer. He is the author and co-author
of about 35 technical publications, including several on speech synthesis. During a sabbatical year in 1977 , he worked at the University of Canterbury,
New Zealand, on learning machines, at New Zealand, on learning machines, at
the University of Calgary on speech synthe University of Calgary on speech syn-
thesis by computer, and at Bell-Northern Research, Montreal, on speech analysis.
Dr. Witten is on the Editorial Board of Dr. Witten is on the Editorial Board of
the International Journal of Man-Machine Studies, and recently, as a consultant to the Open University, participated in the
development of a new course entitled -"The Digital Computer.
ad infinitum! This situation is avoided by the simple expedient of making the time-out inters If an acknowledgement is corrupted by colliding with another transmission, it will simply fail to be received. The device which was expecting the ac knowledgement will then time-out and transmit again. This means that the receiver will see the
twice, and care should be taken to ensure that this does not have any harmful effects. For example, each message could be numbered, so that the receiver can simply discard fter acknowledging it.
The scheme described is used in the Aloha network of computers in the awainan islands. Note that no attemp is made to detect if the bus is busy before sending. expected fairly often and much of the bus's bandwidth will be used for re-transmissions. (One way of calculating just how much - under very simple assumptions - is sivisticated Appendis.) for the sender to listen to the bus before transmitting, to see if it will cause a collision by interfering with another "transmission. This is analogous to the bus bunile this can be expected to reduce substantially the frequency of collisions, it will not eliminate them altogether to send at devices may stily dect exant is for the sender to monitor its transmission itself and check that the bits it "hears" are trhe same as those it sends. If there is a discrepancy, this indicates a collision and thould cease not feasible in the case of radio, since locally transmitted signals tend to swamp the local receiver and so coll sions are not detected locally

Appendis

Suppose d devices are attached to a distributed bus, each of which sends m messages (excluading re-transmissions) per
second. All messages take T seconds to transmit. A synchronous or interlocked bus could handle the traffic provided the total time for $d m$ messages was less than 1 second i.e. provided $d m T<1$
Now let the re-t
re-transmissions/sec. In 100 seconds, there
will be $100 \mathrm{~d}(m+r$) messages sent (including. re-transmissins will be lod m) messages sent (including,
re-transmissions). These will occupy a total re-transmissions). These will occupy a total
of 100 ($m+r$) seconds which must, of course, be less than 100 , and during the remaining 100-100d $(m+r) T$ seconds the bus
will be unused. Hence the probability of a message requiring re-transmission is $100 d(m+r) T / 100$. Now since there are r re transmission for m real messages, the re-
transmission rate can also be expressed as r / m.
Hence $r / m=100 d(m+r) T / 100$ from which

$$
r=\frac{d m^{2} T}{1-d m T}
$$

$$
\begin{gathered}
d\left(m+\frac{d m^{2} T}{1-d m T}\right)<1, \\
\text { or } \frac{d m T}{1-d m T}<1, \\
d m T<1 / 2
\end{gathered}
$$

This shows that the maximum number of messages that can be originated under the distributed bus organization is only half that
which the bus could handle if control were which the bus co
centralized. Actually, these calculations are rather
simplified In real life even a bus with censimplified. In real life, even a bus with cen-
tralized control cannot necessarily handle tralized contro
the traffic if $d m T$ is close to 1 , because this is the average load - the peak load will be higher. If messages are generated stochastic
ally then the performance of a centralized ally, then the performance of a centralized
bus will depend on whether messezas can be queued by the devices that originate them. For example, suppose a device wants to sen a message, but the (centralized) bus is busy,
It must wait for the bus to become free. I while it is waiting, another message appears which must be sent as well, the device needs to be able to queue the two messages. If it
can't, then a message will be lost and so the bus must be overloaded. If it can, how many message can be queued? Two? Two hundred? the performance of a bus with centralized control. In the most optimistic case, where an unlimited number of messages can be queued by each device if necessary, the ce dmT<1.
bus will be able to operate provided dm $<$.
Stoha Statistical calculations show that the Aloha
distributed bus becomes saturated if $d m T$ distributed bus becomes saturated if $d m T$
grows as big as $1 / 2 e$ (Abramson, 1970). Thus grows as big as $1 / 2 e$ (Abramson, 1970 . Thus
the distributed bus can handle about 20% of he traffic that a centralized bus can

Further reading
N (1970) "The ALOHA system another alternative for computer communications," AFIPS Conf
ceedings 37: 281-285; November Davies, D. W. and Barber, D. L. A. (1973) Wiley.
Miley. ${ }^{\text {Metcalfe, R. M. and Boggs, D. R. (1976) }}$ "Ethernet: distributed packet switching for
local computer networks," Communications of the ACM 19: 395-404; July.
of the ACM 19: 395-404; July.
Peatman, J. B. (1977) Microcomputer-based design. McGraw Hill. principles and practices. Chicago: Science Research Associates.
You can now combine fingertip accuracy with strict mperature control (within 2%) at the 0.6 mm tip of a miniature soldering iron.by using the soldering station shown with one of the 24 volt irons.
The exceptionally fast recovery time of a miniature iron of 40 watts at the chosen temperature ensures a short exposur one of our ordinary miniature or general purpose soldering
irons or kits may suit better.

Model CX- 17 watts

Model X25-25watts

Please send me the Antex
colour brochure
Ienclose cheque/P.O./Giro No. 2581000
Name.
Address

All our soldering equipment is made in England to strict local and international standards of safety. Our name for reliability is spreading from all over Europe to the U.S.A to Japan and to most other countries

$$
\cos \theta=0 x y
$$

Nobody makes a more impressive range of analogue meters for the professional than Avo. And within this impressive range is a series of smaller meters which can be picked up with a thumb and forefinger and slipped into a pocket for those applications where simple portability is a crucial factor.

These are the Models 71 and 73 Multimeters, the electronic EM272, the electrician's "Multiminor" MM5, the 300 and 1200 Clampmeters and the LM4 Lightmeter

These instruments may be smaller than the rest, but they'reequally bigin quality, accuracyand reliability.

Otherwise we'd never call them Avo.
Get in touch today and we'll let you have the full facts.

AVO LIMITED
Archcliffe Road Dover Kent CTi7 9EN Telephone: 0304202620 Telex: 96283

Antennas and propagation - 2

Further developments in antenna technology

Part one gave extracts based on some of the papers presented at the Antennas an Propagation Conference, held at the
Institution of Electrical Engineers in London recently. Topics covered included a systems engineering approach to antenna design, satellite
communications and the amateur radio service. This second part continues
where Part one left off, with the discussion on amateur antennas, based on the paper ${ }^{4}$ by Les Moxon, G6XN.

A RECENT analysis showed that at east 80% of the h.f. stations contacted used relatively small antennas on rotary beams. These had closely-spaced halfgain (relative to a dipole). This kind of antenna, on the popular DX bands, gives considerable directivity because of the narrow bandwidths. Even smaller beams are needed, but methods of size lossy devices such as loading coils of resonant feed lines. Les Moxon thereore gives consideration to design optimization on the smaller antenna efficiency. Large be
in commercial installationmonly use an additive principle in that the gain and the volume of space occupied by th array are proportional to the number of
elements. In contrast, the smaller amateur beams use a subtractive pro cess where energy is concentrated in the wanted direction by arranging that cancellation is less complete in th tions.
Mr Moxon gives an example of beam antenna comprising two parallel losed-spaced dipoles fed in antiphas to give a figure-of-eight directiona verted into a cardioid by introducing a phase shift corresponding to the pacing. Provided all the available power is radiated, the gain, 4.2 dB for pendent of size. The practical realiza ion of obtaining higher gains usin more than two elements is extremely difficult because of the low radiation resistances, narrow bandwidths and tractive method of beam formation, but the two-element design above allows
considerable reduction in size without loss of effective gain. The useful bandwidth of the smallest 100 kHz but the required coverage 50 kHz was achieved by separately eeding each element through appro priate networks located at the trans mitter.
In dev
ound that to tune shartened elements o resonance without introducing osses, it was necessary to use as much apacitive loading as possible. The nds of the elements produced very severe capacitance overcoupling of the lements, effectively preventing th beam from operating. This difficulty was overcome by neutralizing the exwires to provide antiphase capacitance coupling between the ends of the ele ments.
Restricted space often goes hand-in hand with height limitations, so it may he antenna. Where ranges are short th heed can usually be met by vertical polarization for ground-wave com unication or horizontal polarization fo ver, where longer ranges are require the use of steep ground slopes, if avail able, is the simplest solution, otherwis ertical polarization may provide th

Fig. 2. (a) A linear resonator for $a \lambda / 2$ dipole. This will enable simultaneous operation at the design frequency and also at a higher frequency. (B) A linear resonator arrangement showin
additional capacitors for three-frequency operation.
only answer. In the latter case, cancel lation of the direct wave by the ground-reflected wave is incomplete s that a modest DX communication height, can be achieved.
The paper then discusses the use o beam antennas for multiband DX operation. Beam antennas for amateu DX communications are normally re-
quired to cover bands about 3% in width quired to cover bands about 3% in widt centred near 14,21 and 28 MHz . To
achieve this, beam antennas used by amateurs have traps to effectively shorten the elements at the highe frequencies. This, says Mr Moxon, is a element for 14 MHz can be used as two half-waves in phase at 28 MHz to obtain 2 dB of extra gain by the additive process.
The traps, which are liable to deterio rate, also add losses, restrict bandwidth
and increase top weight. Alternatives include resonant feeders and tuning and matching networks located in the cen tre of the elements. However, the author of the paper recently adapted a linear resonator, as shown in Fig. 2 (a), at the higher frequencies, without significant effect on operation at the lowest frequency. The inductance L o the conductor AB is tuned by C to act as capacitor is increased to achieve resonance with the inductance of the outer portions of the dipole. (Further analysis is given in Ref. 4).
The capacitance may be switched, or resonance may be achieved simult-
aneously at 21 and 28 MHz by providing two capacitors as shown in Fig. 2 (b). This works on the principle that higher frequency resonances have little effect on the lower frequencies, while the high value of k (k being the coupling
factor between the current paths and $\mathrm{X}_{\mathrm{t}} / \mathrm{X}_{\mathrm{C}}$) brings the parallel and series resonances so close together that the 21 MHz path via C_{1} is inductive a 28 MHz . The main effect of the extra effective value of L is modified. The two capacitors, C_{y} are added to increase the shunt inductance of 28 MHz (having little effect at 21 MHz) to avoid nar rowing of the bandwidth
Mr Moxon points out resonator may also be used to tune a
conductor to or away from any specific resonant frequency, or, for example, to allow masts or rigging to be used as antennas at a smamay also be used to overcome nulls in the polar diagram of an antenna caused by the near presence of resonant metal structures.

Broadcasting

The Independent Broadcasting Authority (IBA) expect that by completion of the u.h.f. transmitter network
they will be operating about 650 transthey will be operating about Thi rrans-
mitters in Bands IV and V . This means mitters in Bands that when the fourth channel comes into operation, the total number of transmitters will be about 2600 within the 44 channels of the u.h.f. band. While careful planning avoids serious inter-
ferences arising within the appropriate ferences arising widcasters who need to
service areas, broadca receive signals outside these areas, for rebroadcast, find that irregular propagation can cause them considerable interference problems line u.h.f. link across the English Channel from Stockland Hill to Alderney, part of the colour-tv feed to the Channel Islands. This is an over-the-horizon sea path of 135 km length
and, characteristically, the received and, characteristically, tre signal is very variable in strength with a range of about 60 dB and generally very weak. For this reason, the signal is very susceptable to co-channel interference (c.c.i.) from severside the Crystal Palace in London, Wrekin in Shropshire and Kippure in Ireland (the latter being at an angle of only 7° off the wanted signal) are particularly powerful sources of
To obtain a broadcast quality signal the reception pattern of an antenna needs on occasions to have null depths of the order of $45 d B$ in the dhis was not possible with conventional arrays, the IBA decided to investigate the properties of adaptive arrays. Details of this investigation are given in a paper by M. D. Windram from the

Winchester establishment.
The paper lists the main advantages of the adaptive array. When operating the adaptive array automatically adjusts the antenna pattern to give minimum interference, and it will handle
these interferences whether they are these interferences whether they are
from single or multiple sources. The antenna can also track the changing apparent direction of interference resulting from propagation effects, and because of its adaptabily $\begin{aligned} & \text { present a severe mounting and }\end{aligned}$ tolerance problem, as does a fixed array. After considerable theoretical study and investigations into the behaviour of a simple four-element adaptive afray (eight element) array. The results of (eight element) array. The results of
tests on this array confirmed the theory and an operational antenna was instal

led at Alderney in March 1977. The final led at Alderney in March 197 . The final Alderney is shown in Fig. 3. This is a 16×4 dipole array constructed as a 2×2 array of 8×2 dipoles
A similar system, having a linear
array of 16 elements, is described in the IEE paper. The output of each element is connected to a network which effectively controls the amplitude and phase of that output. These output signals are controlled antenna, the pattern of which is a function of the control voltages. This combined output is fed to the system's receiver or receivers which provide the video and audio outputs and
also the signals required for the system's measuring circuitry. Up to four receivers may be used within the control loop. The output from the measuring system is then passed to the control logic required to alter the antenna control voltages to modify the antenna pattern. The control logic is converted into analogue form to drive the element com
Ine feedial analysis showed that the ideal element spacing was approximately $2 / 3 \lambda$ since this combined reasonable directivity with easy null control. Car tesian ($\mathrm{X}+\mathrm{jY}$) type control of the an
tenna outputs was chosen as this provided the continuous control needed in the adaptive process, where for small changes in control, discontinuities could cause instability. Pure phase shifters have fire present serious problems.
For u.h.f. arrays of a size similar to that used at Alderney, it is necessary
maintainability to use control algorithms which take measurements by making step changes in the control antenna pattern and measuring the result in terms of c.c.i. on the output signal. The use of correlation methods or similar techniques are too expensive, although in principee capabe of error. The theory of the adaptive array and the theoretical conclusions made by the IBA are described in much greater detail in Mr Windram's paper.
The operational system used at
Alderney has helped the IBA to Alderney has helped the IBA to
maintain a virtually continuous colour service without drop-out due to excessive co-channel interference. Based on results so far Mr Windram says, "we can now state with confidence that propa-
gatic mechanisms such as sea scatter gatic mechanisms scatter do not degrade
and tropospheric ser the performance of the adaptive aerial, and in fact the adaptive aerial has considerable advantages over a fixed array in that it can track the changes in
apparent c.c.i. direction caused by scattering processes".
The IBA is now investigating the design of a simpler four-element system for use on links having perhaps two or
at the most three sources of inter at the most three surces of inter-
ference requiring rejection of about 45 to 50 dB . This system will use the same principles but the amount of equipmen will be considerably reduced, and this
combined with rapidly improving techcombined with rapidly improving tech
nology makes possible the use of a microprocessor to control the array. In conclusion Mr Windram says that it has been shown from theory and confirmed
in practice that an adaptive array pre-

The history of displacement current

Further explanation of an earlier article

by I. Catt and M. F. Davidson (CAM Consultants) and D. S. Walton (Icthus Instruments Ltd)

As a result of correspondence following
As a result of correspondence following
their article "Displacement current" in the December 1978 issue, the authors feel that further explanation of their views is
required. They offer it in the form of this brief historical survey.

IN THE EARLY nineteenth century electromagnetic theory made advances, a cornerstone of the theory being the which developed into the doctrine of continuity of electric current flow, $d q / d t=i$.
In the middle of that century Maxwell struggled with the paradox of the
capacitor, where charge entered one plate and then flowed out of the other plate apparently without traversing the space between the plates (Fig. 1). It seemed that electric charge was being destroyed on the upper plate and being lower plate. Maxwell "cut the Gordian knot" as Heaviside put it (Heaviside 1893) by postulating a new type of current, called "displacement current", as to save the principle of continuity of electric current.
"Displacement current" was a result of his postulation of "electric displacement". Maxwell said that the total outsurface is equal to the total charge inside the closed surface (Maxwell 1873).

It is not surprising that objections were raised. Notice, in Fig. 2 , that if in
any circuit there should be a break, $B C$, in the current path, we are bound by the principle of conservation of charge to say that the current i, that is the flow of charge, entering B from A accumulates as charge ${ }^{\text {reappearing at } C \text { "accumulates" as }}$ equal negative charge $-\int i \mathrm{~d} t$. By definition, electric displacement outward from B equals the total charge trapped at $B ; D=\int$ idt and $i=\mathrm{d} D / \mathrm{dt}$. It is not a
coincidence that "displacement current" saves the idea of continuity of electric current; it does so by definition. With the postulation of displacement current, it would never in future be possible to devise an experiment which
might refute the principle of continuity of electric current. Popper would therefore say that "displacement current" is
an unscientific concept (Popper 1963) a point, displacement takes its place Whenever electric current seems to disappear at a point, displacement current takes its place.
It is important that Maxwell and tering a capacitor plate became trapped and had nowhere to go. Writers on the subject must be glad that some route declare itself, since they say that the brilliant postulation of displacement current led to the postulation by Maxwell of waves in space.
Meanwhile, even as Maxwell wa contemplating the ethereal displace were inventing and building wired telegraph systems. The distortion of signals travelling long distances wa bad, and was thought to be due to the
fact that the capacitance of the tele graph wires had to be charged up through the resistance of the wires, resulting in an RC time constant whic

Fig. 1. Charge flowing into one plate of capacitor as current into one plate flowin out of the other plate.

Fig. 2. Electrical circuit AD with a break in the current path at $B C$. Charges accumulate at B and C.
erently. As late as 1910 virtually all electricians (including Lord Kelvin) di not accept Oliver Heaviside's claim that a telegraph wire had distributed in ductance as well as capacitance, and hat if only this inductance were in oading coils, distortion-free transmis ion over long distances could be achieved (Heaviside 1893).
It was important for Heaviside to encourage a sensible approach to th lines, because the practical pay-off in telegraphy and telephony would be mmense. (This misunderstanding de layed the introduction of telephones fo twenty years.) This practical pay-off
would be best achieved by arguing that signals travelling down (between) eelegraph lines were undistorted TEM and similar to the waves in space dis covered by Hertz in 1887 , twenty year Maxwell as one implication of his proposed displacement current.
It was important for Heaviside not to criticise the theory he was trying to argue from, Maxwell's electromagnetic judicious for Heaviside to question the concept of displacement current, and he never did.
The essence of the concept of a ransverse electromagnetic wave, TEM flows laterally across the surface of the wave front. The analogy is the Severn Bore, where we see a single step of water rushing up the River Severn, Everything ahead of the step is steady, steady. There is no lateral, sideways flow. In the electromagnetic case (Fig 3), the idea of a lateral flow of curren across the face of a TEM step is absurd netic field; the step would "get ahead of itself". Further, since the step travels forward at the speed of light, $1 / \sqrt{ } / \mu$ any lateral flow would cause embar the same way that when you walk across inside a moving train by Pythagoras' Theorem you are travelling faster han the train.
Now although in the case of a capacitor, displacement current needed
to be regarded as just like a real current, for instance causing a magnetic field; in
the case of the D flux at the front of a step of TEM ($E \times H$) energy current travelling down a telegraph line, the
displacement clearly must not behave like a real current - for instance by creating a magnetic field which would reach out ahead of the wave front and ruin its TEM nature.
Maxwell and later Heaviside did not notice the discrepancy in the require-
ments of displacement current; that in a capacitor it must act like a real current but in a transmission line it must not, because neither of them knew that a
capacitor is no more nor less than a capacitor is no more nor less than a 1978, p. 51). This is even today known by very few scientists. Maxwell, along with today's text-book writers (e.g. Fewkes 1956, Bleaney current $\mathrm{dD} / \mathrm{d} t$ travelling across between the plates of a capacitor $B C$ was uniformly distributed, and it is only very recently that it has been pointed out that the flow of current and in a transmission line; that the field moves out from the capacitor's leads as if they were links to one end of a trans mission line. So the discrepancy could not become apparent.
current arises when we realize that the two plates, $\mathrm{BB}^{\prime}, \mathrm{CC}^{\prime}$ in Fig. 4, are a transmission line. We know that the current i travelling down to B from A the capacitor plate BB^{\prime}. This route, along the capacitor plates, failed to declare itself to Maxwell, and everyon has followed his lead.
In a transmission line (Fig. 4), everyon the line at B leaves B by flowing along the line BB^{\prime}. No displacement current $\mathrm{dD} / \mathrm{dt}$ between the lines is needed for us to retain the doctrine tion of current. In fact, if this $\mathrm{dD} / \mathrm{d} t$ were regarded as a current, far from saving the doctrine, it would destroy it, because now more current ($i+\mathrm{dD} / \mathrm{d}$) plate BB' than was entering it. The last sentence is difficult to grasp; no matter, because it is easy to see, and sufficient to see, that if i enters B from A and i leaves B along BB , continuity of current tulate displacement current.
"But surely we cannot just drop displacement current when for a century every expert (e.g. Solymar 1976, Winch foundation of our craft: that 'Maxwell's leap of genius' in proposing displacement current was what got the subject going - leading to Hertz's discovery of waves in space, for instance?" The answer lies hidden in Heaviside's reverse this." In his "Electrical Papers", Vol. 1, 1892, page 438, Heaviside wrote;

Now, in Maxwell's theory there is the

Fig. 3. A TEM step (top) travelling at the speed of light and guided by two wires (below). The B arrows represent
magnetic flux lines and the D arrows magnetic flux lines and the
electric strain between the wires.

Fig. 4. Current flowing into and out of capacitor plates $B B^{\prime}$ and $C C^{\prime}$. These transmission line.

produced in the dielectric parts by the electric force, and there is the electric force, and there is the kinetic or

 duction due to the magnetic force in all ductionparts of the field, including the conducting parts. They are supposed to be set up by the current in the wire. We up by the energy transmitted through the medium around it.
The discrediting of displacement current merely makes Heaviside's "We reverse this" mandatory. It means "that current an effect, rather than (as Max well thought) the other way round. If we keep to "Theory H", the theory that the field $E \times H$, travelling along between the wires at the speed of light what Heaviside called the "energy current", is the cause, then electric charge and electric current are merely whe If electric current is that which defines the side of an energy current, then we may with equal justification postulate "dis placement current" as that which de fines the front face of a step of energy
current. Under "Theory H", Maxwell's 'leap of genius' (in postulating displacement current and thence waves in space) becomes tautological; "Because
to have a front face (displacement current), then I propose such a front face and therefore I propose waves in space."
Maxwell would have saved us a century of confusion if he had had enough
insight to say, "Since circuits containing capacitors, that is, open circuits, work, it follows that the essence of electromagnetics cannot be electric
current in closed circuits of conductors; it must be something else. What about waves in space?" Heaviside, seventy years ago, missed the key point by a whisker. He failed, but he failed gloriously. He never discovered the flaw

References

Bleaney, B. I. and Bleaney 1965, Electricity don) p. 258 . Fewkes, J. H., and Yarwood 1956, Electricity and Magnetism, Vol. 1 (London: University Heaviside, O., 1893, Electromagnetic Theory, (London. Reprinted New York: Chelsea Publishing, 1971) p. 28 section 30; p. 441 Maxwell, J. C., 1873, A Treatise on Electricity Max Manenetism, (Oxford: Clarendon) p. 253. Popper, K. R., 1963 , Conjec
tions, (London: RKP) p. 37.
Solymar, L., 1976, Lectures on E
netic Theory, (Oxford: OUP) p. 6 . netic Theory, (Oxford: OUP) p. 6 . Winch, R. P., 1963 , Electricity and Magnet-
ism, (Englewood Cliffs: Prentice-Hall) p. 387 .

Further reading

Catt, I., Walton and Davidson 1979, Elec tromagnetic Theory,
Publishing, 17 King Harry Lane). Catt, 1., Walton and Davidson 1979, Digit Hardware Design (London: Macmillan). Catt, 1., "The rise and fall of bodies
knowledge". The Information Scientist, knowledge". The Information Scientist, 12
(4), December 1978, pp. 137-144.

The next seminar by the authors on digital electronics design will be held a St Albans on May 3-4. For information, Harry Lane, St Albans, Herts.

H.f. amateur band frequency synthesizer - 1

by M. Small, B.Tech. (G4DVI)

This article describes a frequency synthesizer which is capable of covering most of the h.f. band, and which has been used
as the local oscillator of an $h f$. as the local oscillator of an h.f. amateur-
band transceiver by the author for five months. The synthesizer contains three basic components: a digital phase-locked bop, a variable frequency interpolation scillator and a heterodyne mixer.

WISHING to build a transceiver to cover the amateur bands from $10-160 \mathrm{~m}$ large number of crystals, the author was prompted to investigate synthesizers using phase-locked loops. A costing heap t.t.1. m.s.i., a phase-lock loo which would provide the equivalent of 32 crystals could be built for the component cost of between 5 and 8 crystals. There are many diferent ways of vey of synthesizers vey of synthesizers appeared in the Sept..
Oct. and Nov., 1978 issues and on p. 83 of this issue - Ed.).
The system sketched in Fig. 1 comprises a phase-locked loop which proween 7 and 23 MHz . The output of this is ombined with a variable frequency rom 5 to 5.5 MHz , the products mixing covering a band from 1.5 to 28.5 MHz

	Performance
range	1.5 to 28.5 MHz , in 500 kHz bands.
output	70 mV r.m.s. into 500 ohms.
stability	Digital phase-locked loop: $10 \mathrm{ppm} /$ degree Centigrade
	Interpolation oscillator: 50 Hz per 15 minutes
	after 10 minute warm up.
purity of output	In-band spurious outputs typically 90 dB below carrier.
	Out-of-band products
	from mixer more than 30dB below carrier
lock up time of phaselocked loop	Small signal: 5 ms to
	within 10% of change.
	Large change: approx.
	$8 \mathrm{~ms} \mathrm{per} \mathrm{MHz} \mathrm{change}$.

Two sets of local oscillator frequencies would give coverage of the amateur bands for a given intermediate frequency. For a given v.f.o. frequency,
there are also two sets of frequencies from the phase-locked loop which could be used to obtain the required localoscillator frequencies. Tables of all these possibilities were drawn up but only the final one used, Table 1 , is
shown. This was chosen because direct coverage of the normal h.f. band is also obtained, extending the potential use of the device.

Principle of phase-locked loop The operation of a phase-locked loop system can be seen from Fig. 2. The loop contains a voltage-controlled oscillator
whose output frequency (ω_{y}) is a function (K_{y}) of the control voltage V_{c}

$$
\omega_{\mathrm{v}}=K_{\mathrm{v}} \cdot V_{\mathrm{c}} \mathrm{rads} / \mathrm{sec}
$$

The output from this oscillator is buffered and fed into the programmable divider which divides the input frequency by some integer N, so that its
output has a frequency equal ω_{v} / N and
its transfer function $K_{\mathrm{n}}=1 / \mathrm{N}$. The output from the divider is taken $t{ }^{t}$ with a reference frequency $\omega_{\text {ref }}$, derived from a master oscillator. The phase detector produces an error voltage V_{p}, whose magnitude is a function K_{p} of the

$$
V_{\mathrm{p}}=K_{\mathrm{p}} \cdot \phi_{\mathrm{e}}
$$

This error voltage is smoothed by the oop filter, to remove residual traces of response of the system. It is then fed back to the voltage-controlled oscilla tor. The loop filter has a transfer func tion K_{f}

$$
V_{c}=K_{f} \cdot V_{e}
$$

Given that the characteristics of the arious components in the loop ar appropriately matched, the loop wil e output frequency from the v.c.o. is he multiple N of the reference frequency.

$$
\sigma_{v}=N \omega_{\text {ref }}
$$

Clearly, since N may be program mable within some range, a number of output frequencies may be selected, the minum separation between the eing ω_{r}

Design of the loop

Design aims of a p.1.1. will specify such factors as settling time, stability, spec ral purity and drift. More detailed anto predict how these aims can be achieved, and the primary approach to this problem is through the use of servo mechanism theory form analysis.
The Laplace transform allows the steady state conditions in feedback control systems. It is valid for positive real time, linear parameters. An introin reference 1 .
In this method the feedforward and feedback transfer functions of the control loop are defined in terms of the complex variable s. The resulting equaraic techniques to determine the stability of the system. In addition, their type and order can be used to indicate the transient response characteristics to be expected under various condions forward transfer characteristic of the loop,
$G(s)=K_{p} \cdot K_{f} \cdot K_{v} \ldots \ldots \ldots \ldots \ldots$, (1) and the feedback transfer function, $H(s)=K_{n}=1 / \mathrm{N}$.
The characteristic equation of the loo CE is defined to be
$1+G(s) \cdot H(s)=\phi$
Typ
1
2
2
3

step phase zero

STEADY STATE PHASE ERROR
step frequency step rate of change of frequency step frequency
constant

WIRELESS WORLD, MARCH 9 g $1+K_{p} . K_{t} . K_{v} . K_{\mathrm{n}}=\phi$. When the loop is closed its transfer function is

$$
\overline{1+\mathrm{G}(\mathrm{~s}) \cdot \mathrm{H}) \mathrm{s}}
$$

Substituting from (1) and (2), this becomes for our system
$\frac{1}{1+K_{p} \cdot K_{f} \cdot K_{v} / N}$
(3)

Now some of the functions K_{p}, K_{v}, K_{f} Nowe a complex nature; that is they are functions of s. Equation (3) will therefore be a polynomial of s, and the characteristics of the polynomial define the type and order of the system. The praclar will be discussed shortly.
Loop filter. The loop filter is the main variable component which can be designed to tailor the fundamental loop
characteristics - lock up time, transient response and loop band width. The other components, the v.c.o., phase detector and programmable divider usually have characteristics which are fixed or defined by the application. It is generally accepted characteristics are obtained from a type 2 system, practical differences between type 1,2 and 3 being indicated by the steady-state phase errors, show A type 2 system maintain coherence between reference and con trolled oscillators for steps in both phase and frequency, whereas in a typ system thase error which varies with frequency. The extra advantage of type 3 system being able to follow changing frequency with phas coherence is not usually worth the extra form shown in Fig. 3(a) will produce type 2 system. ${ }^{2}$
The transfer function of such a filter (if A is large)

$$
K_{f}=\frac{1+T_{2}}{T_{1}}
$$

where $T_{1}=R_{1} \cdot C_{1}$ and $T_{2}=R_{2} . C$
These time constants can further be expressed in terms of the loop natura

$$
T_{1}=\frac{K_{\mathrm{p}} \cdot \dot{K}_{\mathrm{v}}}{N \omega_{\mathrm{n}}{ }^{2}} \quad \mathrm{~T}_{2}=\frac{2 \xi}{\omega_{\mathrm{n}}} .
$$

hence

$$
R_{1}=\frac{K_{\mathrm{p}} \cdot K_{\mathrm{v}}}{N \omega_{\mathrm{n}}{ }^{2} \mathrm{C}_{1}} \quad R_{2}=\frac{2 \zeta}{\omega_{\mathrm{n}} \mathrm{C}_{1}}
$$

Fig. 3. Loop filter to obtain a Type 2 form of phase characteristic is at (a),
modified as at (b) to contain additional filter $R_{1} C_{2}$ for the reduction of error

The values required for ω_{n} and ξ must be chosen by the designer to obtain the required settling characterresponse (peaking and roll off) The values for ω and ζ can be chosen using the normalized transient response curves shown in Fig. 4, which plot the effect of varying the damping factor is shown and the normalized time axis is a
function of ω. From these it can be seen that for reasonable values of damping factor $2>\xi>0.5$ a system will lock to within 10% of the step within the time, $t=5 / \omega_{\text {. }}$. Thus, the required settling time can be used to deter

imiting conditions

For the phase-lock loop system to possess the characteristics predicted by ne solution of these equations, it is are driven beyond the range over which their transfer functions are as described normally avoided by allowing sufficient onditions and the known physical The the components. sidered are
-maximum and minimum output vol amplifier.

- limit of the linear voltage/frequenc characteristic of the varicap diode.
-maximum output from the phase de tector.

[^3]WIRELESS WORLD, MARCH 1979 These limits must be allowed for overshoot as found from the time-domain response curves. This is the case most likely to drive the operational amplifier or the varicap diode out of the linear region. The comthe edge of the band covered together with error pulses from the phase detector should also be catered for. The problem of error pulses is most readily reduced by inserting a simple, low-pass filter between the phase detector and the integrator. This can be obtained by
dividing the resistor R, in the integrator circuit into two parts and inserting a capacitor C_{2}, as in Fig. 3(b).
The turnover frequency of this filter should be chosen to be 10 times the not to reduce the phase margin of the system. The filter has the additional advantage that it reduces the feed through of the reference frequency and so contributes to the spectral purity,
which may be expected from the output of the voltage-controlled oscillator. The turnover frequency can be shown to be

$$
f_{\mathrm{c}}=\frac{4}{2 \pi \cdot R_{1} \cdot C_{2}}
$$

Response to large changes in \mathbf{N} The response of the system to a large change in the division ratio N can be Laplace method. This occurs when the maximum cumulative phase error that the phase detector can handle is exceeded during lock up. However, it frequency step which will remain within this limit and the response time when it is exceeded
The maximum phase error that the phase detector used here can handle is output remains of the correct polarity, because the device contains a frequency detector, but its magnitude is a sawtooth function of increasing phase error, as in Fig. 5. This sawtooth has a stantaneous difference between the two input frequencies. The sawtooth modulates the control voltage, causing the system to sette in what appears to contains what is effectively a low-pass filter, the oscillations appear to increase in amplitude as the v.c.o. approaches its target frequency.
It is possible to predict the maximum frequency step which can be achieved radians. If the loop is initially in a locked condition, both the reference frequency and the output from the programmable divider have the same frequency and of the graph A-B. At point B, the modulus of the divider is instantaneously changed by some step. The

ig. 4. Normalized response curves in
he time domain of Type 2 system to a
step in frequency.

Fig. 5. Sawtooth output of phase
detector for wide capture band.

ig. 6. Effect of changing division ratio
f programmable divider
v.c.o. frequency is initially unchanged and the result is that the output fro he divider changes to a new frequenc f_{2}, shown by BC in Fig. 6. The loop now creasing phase and frequenc coherence will again be achieved after time T.
The magnitude of the phase error is
$\oint_{\mathrm{CD}}=\pi\left(f_{\text {ref }} \pm f_{2}\right) T$ rads.
If the original division ratio was N_{1} and he new ratio is N_{2} the

$$
f_{2}=\frac{N_{1}}{N_{2}} \cdot f_{\text {ref. }}
$$

So the
written

$$
\phi_{\mathrm{CD}}=\pi \cdot f_{\text {ref }} \cdot\left(1 \pm \frac{N_{1}}{N_{2}}\right) \cdot T .
$$

So the original equation can be re-

Given that the maximum phase error

$$
\begin{aligned}
& -2 \pi<\pi \cdot f_{\text {ref }} \cdot\left(1 \pm \frac{N_{1}}{N_{2}}\right) \cdot T<+2 \pi \\
= & \left(1-\frac{2}{f_{\text {ref }} \cdot T}\right)< \pm \frac{N_{1}}{N_{2}}<\left(1+\frac{2}{f_{\text {ref }} \cdot T}\right)
\end{aligned}
$$

For example, if the term $f_{\text {ref }}$. T has value of 50 , which is reasonable to en are minim with

$$
\frac{48}{50}<\frac{N_{1}}{N_{2}}<\frac{52}{50}
$$

So the maximum step in N correspond about-4\%, if phase coherence is to b maintained.
\qquad

72
Reference feedthrough
The most significant problem with a digital phase detector is reference frequency feed through. This occurs
when the loop is locked because of leakage in the phase detector, integrator or any other similar small unbalancing conditions. The feedthrough frequency modulates the v.c.o. and this
modulation can be detected as sidebands on the wanted signal. The magnitude of this effect may be reduced by the loop integrator which acts as a low-pass filter. Further suppression may be obtained by inclualancing the leakage effects.
The MC4044 phase detector contains a charge pump with a small reverse leakage current, which may, at ex-
tremes of temperature, be $5 \mu \mathrm{~A}$, but is typically less than $0.1 \mu \mathrm{~A}$. If it is assumed that the reference frequency is greater than the time constant T_{2}, the gain of the filter at this fr $\mathbf{R}_{2} / \mathbf{R}_{1}$.
The
due to the leak phase detector output

$$
V_{\mathrm{p} \text { (leakage) }}=R_{1} I_{\mathrm{L}} \text {. }
$$

Thus the error voltage due to this leakage is
$V_{\mathrm{E} \text { (leakage) }}=\frac{R_{1} \cdot I_{\mathrm{L}} \cdot R_{2}}{R_{1}}=R_{2} \cdot I_{\mathrm{L}}$
It is possible to compute the mag-
nitude of the sidebands produced for nitude of the sidebands produced for theory. For f.m. signals with a small modulation index the magnitude of the first sideband is
$J_{1}=1 / 2$ (modulation index)
In the case here this is
$J_{1 \text { (leakage) }}=1 / 2, \frac{V_{\mathrm{e}} \cdot(\text { (leakage) }}{\omega_{\text {ref }}} \cdot K_{v}$
i.e. $\frac{\text { sidebands }}{\text { carrier }}=1 / 2 \frac{R_{2} \cdot I_{\mathrm{L}} \cdot K_{\mathrm{v}}}{\omega_{\text {ref }}}$
$=20 \log _{10} 1 / 2 \cdot\left(\frac{R_{2} \cdot I_{\mathrm{L}} \cdot K_{\mathrm{y}}}{\omega_{\text {ref }}}\right)_{\mathrm{dB}}$
To be continued
\square

References

Garth Nash. Phase-locked loop design AN535.
2. P. Atkinson and A. J. Allen. Design of Type 2 digitital phase-locked loops. Rac

More letters

BRITISH INDUSTRY WASTES WORKERS' SKILLS
Mr Pepper's advice (January letters) to those with engineering skills to emigrate to a
seller's market is economically sound and his example testifies to the reality of our social
freedom, i.e. to the existence of international freedom, i.e. to the existence of international
free-trade. Intra-nationally of course, constraints other than those of commodity market-value are recognised by executives
and other workers, e.g. Der Spiegel recently and oported that British workers are "treated
res repo ditr" (classwise) and of course they too
likemetimes tind their skills better paid else-
somet :sometim
:where
The re
The recovery of "British" industry has long
been senght been sought in the same direction. Most large
firms find it more profitable not to export but fo manufacture within their market region, i.e. not the produce but the production is exported.
twofold:

1. Dependence upon supra-national firms.
2. Dependence upon supra-national firms.
3. The working structure chosen by most firms wherein personnel placement in "divi-
sion of labour" categories is made a class sion of labour" categories is made a class
attribute with rigidly controlled contributions to and rewards from society. As a socially constructive approach to the problem I recently suggested to my employer
(a major international industry) via the suggestions box that an "innovators' workshop" be incorporated as a subsidiary of the
group, administered by the innovators with group, administersed to the group's employed
spare time access to expertise, and ot some capital plant during
normal unused periods, in order to develop to normal unused periods, in order to develop to prototype stage potentially commercial pro-

ducts for separate exploitation with joint | equity. |
| :--- |
| Being |

Being socially revolutionary the idea was rejected (cf. the Lucas Combine plan). To
demonstrate the scope of the project I described in outline to the management a novel
3D system enabling transmission and recor 3D system enabling transmission and recor-
ding of "look around" 3D motion colour ding of "look around" 3D motion colour
images, with "zoom" and projection facilities.
It is n It is not, therefore, the technocrat's cur-
rent differentials alone, but the hierarchy's rent differentials alone, but the hierarchy's
increasing afilure to employ creatively skills
of all kinds which defines our socio-economic
oromem problem.
C. H. Dierks C. H. Dierks
$\begin{aligned} & \text { Nether Stowey } \\ & \text { Somerset }\end{aligned}$

3D TELEVISION

Being away at the time your November issue was published I only recently saw the article "What future for television?" with its dis-
cussion on three-dimensional viewing. It cussion on three-dimensional viewing. It
certainly revived memories of a quarter of a century ago for we could have had such then compatible and in colour.
My father, the late Granville Bradshaw,
whose inventions spanned many fields but whose inventions spanned many fields but
who was better known for hivanced designs of automobile, motorcycle and aero
engines, some of which are to be found in the engnes, some of which are ther museums worldwide, de-
Science and other veloped in the 1930s a system for the three-
bject in the foreground, say, was angularly object in tisped in relation to the background as the
dis viewer moved across the screen of the dis-
play, thus giving a very realistic 3-D impresplay, thus giving a very realistic s-D impres-
sion. In fact it was as if one could look ion. In fact it was as if one could look With this in mind when, in the early 1950
and elevision concerns were becoming some-
what apprehensive of losing their new-found audiences which flocked back to the cinemas
with their wide screen and sterescopic syswith their wide screen and sterescopic sys
tems now all the rage, he conceived the idea that the principle of his 3-D picture display, which was wholly mechanical, could be
adapted for television viewing and asked me adapted for television viewing and asked me
to design an appropriate electronic 3-D system based on this, which I did.
Both the BBC and the then ITA were
B approached and were greaty indate to move into this field, let alone any finance with which to carry out experiments, so, as it has
so often been said, yet another British invenso often been said, yet another Biritsh in seing too far ahead of its time was stifled
tion being
at birth.
Readers of that eminent journal of the day Readers of that eminent journal of the day
Picture Post may remember the publication Picture Post may remember the publication
of an article headed "We can have 3-D Television" on this very project. The date, July 1953.
Geoffrey Bradsha
Leatherhead
Leathern
Surrey
May I correct Professor Bell for a minor inaccuracy in his article "What future for television" (November issue)? I remember as
a boy seeing in London the feature/musical a boy "Kiss Me Kate" at the Empire Leicester Square and "House of Wax" at the Warner
Leicester Square in 3D using $45^{\circ} / 45^{\circ}$ Leicester Square in 3 D using polarised glasses. I also refer him to the $^{\circ}$ polarised glasses. I also refery Beports on 3D films, especially in the USSR.
His comment " His comment "... but does not appear to
have produced any normal film in 3 D , neither feature or documentary" is consequently in serious error.
H. L. Yentis
H.L. Yentis
Edgware
Middlesex

GENERATING THREE
PHASES
Three phases may be generated more simply than the method suggested in "Circuit Ideas"

a CD4018 variable divider for the CD4017 a CD4018 variable divider for the CD4017
since this gives square wave outputs, dis placed in phase from one another (see the accompany
D. Austin

White paper on broadcasting
 strongly criticized
 The Government's White Paper on broad- $\begin{aligned} & \text { control as great as any to be found in the } \\ & \text { casting was likened to a haystack stuffed } \\ & \text { world and out of them had grown a reputa- }\end{aligned}$ $\begin{array}{ll}\text { casting was likened to a haystack stuffed } \\ \text { with weapons in the November } 78 \text { issue of } & \text { world and out of them had grown a reputa } \\ \text { tion for the range and quality of program }\end{array}$ Independent Broadcasting, the IBA's quarterly journal. This was a personal reaction by the IBA's director of television, Mr Colin Shaw, a former chief secretary to the BBC. In the article, Mr Shaw said that the White Paper proposed Government intervention on a scale previously unknown in Britain. This, he said, far exceeded wnything that This, he said, far exceeded anything that would be considered tolerable if it were applied to the press or book publishing. He recalled that the broadcasters had always acknowledged the the Government's res- ponsibility for the allocation of frequencies secured by international agreement gave politicians a greater right and opportunity to intervene in the conduct of broadcasting and intervene in the conduct of broadcasting, and that, untill now, they had exercised this right that, until now, they had exercised this right with caution. Very early in the history of broadcasting in Britain ministers had broadcasting in Britain, ministers had evolved the formula, in dealing with parliaevolved the formula, in dealing with pariia- mentary questions, that the day-to-day responsibility for the broadcasting services rested with the broadcoasting authorities. By rested with the broadcasting authorities. By these means, British broadcasting had enjoyed a degree of independence in editorial ming which was widely envied. However according to Mr Shaw, there were indica- tions that both of these might be in danger "Well intentioned as it may be, an innocent-seeming, in some of the proposals, haystack stuffed with weapons against som future need," he said. Mr Shaw also discus
 Mr Shaw also discussed the threats posed to the independence broadcasting by some of the proposals for mininsterial appointments to the IBA and BBC advisory bodies and to to the IBA and BBC advisory bodies and to service management boards in the BBC. He asked whether the members of the OBA would have the trustee role traditionally given to the Governors of the BBC and members of the IBA, who act both as trustees of the national interest and as a buffer between the Government and programme makers. "In a television interview not long ago after the White Paper appeared, the Home Secretary seemed to "be saying that they would not" he said "4 they would not", he said, " \ldots The OB would be highly vulnerable to Government would be highly vulnerable to Governme pressure in the absence of such a buffer".

GEC and Hitachi join forces

to make tv sets

Following the example set by Rank and. Toshiba, who in August last year said that
they were to operate jointly, two more companies, GEC and the Japanese company work together in the manufacture of television sets at Hirwaun in South Wales. This
union has been welconed union has been welcomed by Alan Williams,
Minister of State for Industry, whose own policy is to encourage co-operative ventures
between Japanese and Bitish conane between Japanese and British companies. was made that this venture, like the one was made that this venture, like the one
taken by Rank and Toshiba, would make it
clear in tapan that we the rritish) really clear in Japan that we (the British) really do
want Japanese companies in our country He welcomed the project for a number of reasons. Apart from saving a large number of jobs which were very seriously threatened in
an area of high unemployment, it would enable Japanese technology to be applied to British industry. It would also increase efficiency and exports and save time on
imports, and it would show that yet another imports, and it would show that yet another
major country had chosen the UK as a base
for for its manufacture for the whole of Western Europe. GEC already sourced over half of
their non-tube components and materials their non-tube components and materais
from within the UK, and the new joint
venture would make the maximum use of UK venture would make the maximum use of UK
tubes, components and materials, subject to
commercial considerations. There would also
be extra investments to improve the quality of the components and this in turn would add
to the capability of the British component ndustry and help to improve the quality and reliability
tronics.
Mr Williams suggested that the venture would be a great encouragement to Japanes and other foreign investors. Repeatedly these medium-sized, well-managed enterprises in his country could operate well, could
highly efficient and have. high productivity, resulting in the country having the best profitability in Europe.
Discussions between Hitachi and the De partment of Industry, about Hitachi's propsal to establish a colour-tv manufacturing
facility in the UK, initially took place during 1977 and early 1978, but as a result of opposition from certain sections of the
British ty industry the company eventually British tv industry the company eventually
withdrew its proposals. However, during his visit to Japan in April 1978, Mr Wiliiams stressed his, and the British Government's, disappointment at Hitachi's decision, and
indicated that it was in sensitive sections such as tv manufacture that co-operation etween Japanese and British companies would bring mutual benef

RCA to enter videodisc market
Foliowing the lead of Philips and MCA (se lewnsh its "Selecta Vision" videodisc system in the United States of America. RCA's resident, E. H. Griffiths, said that they the product ready for introduction in the US and a schedule for the product's introduc ion, and marketing concept aimed be announced later this year.
The company is giving the videodisc sysm top priority because their marke research indicates that it will become a
multi-million-dollar business in the 1980's. Before RCA would consider going ahead
with the project two years ago the com with the project two years ago the com which had to be met. They planned to deve lop a videodisc player that could be sold at a etail price of $\$ 400$ (about $£ 200$) or less, and
an uncoated disc that would contain one hour of programming per side, or a total of two hours per disc. There also had to be available adequate software, or program-
ming, to support the introduction of the ming, to support the introduction of the say that they have now met these goals.
The RCA system is very different to The RCA system is very different to the Philips/MCA system in that it uses a grooved
disc that is played with a diamond stylus (the latter uses an optical system so that no stylus
or neede ever touches the disc) RCA's disc or needle ever touches the disc). RCA's disc
revolves at 450 rev $/$ min, contains one hour of revelves at
programming on each side, and is expected to
sell for about $\$ 10$ sell for about $\$ 10$ to $\$ 17$ (about $£ 5$ to $£ 8.50$). The disc comes in a plastic sleeve, similar
to a record album cover, which, when in serted into a slot on the front of the videodisc
player, deposits the disc on the turntable. To player, deposits the disc on the turntable. To
remove the disc, the empty sleeve is simply remove the disc, the empty sleeve is simply
re-inserted into the slot. RCA's initial catalogue of programmes will
contain 250 titles including fature contain 250 tites including fature motion pictures, musical sports, cul
and children's programmes.

New electronics
 teaching programmes available in UK

A series of electronic training systems for subjects ranging from elementary principles
to modern communications and computers, is now available in the UK. These systems re are modular programmes containing all the series of laboratory experiments in the sub ects they cover. The elementary, basic and example, consist of a set of experimenta circuit boards and plug-in components. Each circuit is permanently wired underneath its board and the plug-in components, which
complete the circuit, are used only for the parameters which are changed during the is supplied with its apronic training system supplied with its appronriate the

First transatlantic video link using optical fibres

On December 12 a two-way sound and video
system, originated and terminated with
optical fibre equipment, linked the Post Office's Contravision studio in London with a Bell Canada studio in Toronto, Canada. This was the first ever transatlantic link of its kind had been used for Contravision, which is the Post Office's conference-by-tv, system. The across the table' discussions with their colleagues on the other side of the Atlantic. The transatlantic discussions demon strated the capabilities of optical fibre tran-
mission systems in sending sound and vision signals over long distances and also marked he start of a two-year household trial of an ptical fila tele shone customers in Yorkville Toronto - which Bell Canada is carrying out.
The
The main link in the communications chain was the Intelsat satellite positioned
22,300 miles above the Atlantic Ocean. This carried the signals between Britain and systems in London and Toronto were used to carry the signals to and from the two studios. In London, outgoing signals were transmit-
ted over a 1.7 km optical fibre link, supplied ted over a 1.7 km optical fibre link, suppied
by British Insulated Callenders Cables Ltd (BICC) and Plessey Telecommunications
Ltd, to the Post Office Tower. This syster Ltd, to the Post Office Tower. This system
has been in public service for the past two has been in public service for the past two
years as part of the Post Office's public

Contravision network
According to the Po
According to the Post Office, together with
British industry they have developed optica British industry they have developed optical
fibre systems to the extent that they could be installed and working in the UK telephone
network by 1980. Their aim initially is to network by 1980. Their aim initially is to
introduce optical fibres into key inter-cit introduce optical fibres into key inter-city
networks and between telephone exchanges
within main city centres Aready within main city centres. Already telephone calls are being carried by two experimenta
optical fibre links in the UK -a 13 km link in Suffolk and a 9 km link in Hertfordshire. Two
Oper further trial links are nearing completion
These are between Maidenhead and Slough These are between Maidenhead and Slough Uxpbridge and Ruislip, supplied by GEC and TCL. On the Suffolk link, at Martlesham,
Post Office researchers are studying more Post Office researchers are studying more operations, as well as cost-reduced systems. The optical fibre cables at the Canadian
end of the transatlantic link were made by nd of the transatlantic link were made by
Northern Telecom Ltd and were linked to laboratory where research for the two-year
rial is being carried out. Bell Canada's trial is being carried out. Bell Canada's
research company, Bell Northern Research research company, Bell Northern Research transmission systems in 1972. Then, in 1977 ,
following work for the Department of Natio following work for the Department of Natio
nal Defence, they installed a 1.42 km optica nal Defence, they instaled switching centres in Montreal to test optical fibres under field
conditions. Each pair of fibres in this trial are used to transmit and receive 96 simultaneous telephone conversations.

News in brief

Post Office trials on an inductive coupler to help people using hearing aids fitted with pick-up coils to make better use of the replaces the standard telephone inset. Eighty per cent of the trial 'guinea pigs' reported a
substantial imporen substantial improvement in reception when
using the new device. Some minor modificausing the new device. Some minor modifica-
tions were made as a result of this trial, and a first contract for 100,000 units has now been placed. First deliveries
expected early this year.
The University of Essex will be holding its annual electronics summer school for
teachers during the week July $9-13$, 1979. This year, as well as courses in linear circuit design and digital circuit design, a third
course in electronic systems is available course in electronic systems is available
which is closely related to the A.E.B. electronics systems A-level course. The linear design course covers the use of transistors
and operational amplifiers in analogue applications, particular emphasis being placed cations, particular emphasis being placed
upon design philosophy related to the basic circuits in a hi-fi amplifier. The digital design course concentrates on the use of the tran-
sistor as a switch and develops design using integrated logic circuits. A programme of
laboratory experiments is included on each laboratory experiments is included on each
course so that the lecture material is fully course sed hat the iecture mation on the sum. super school may be obtained from DD M. J.
Hawksford or Mrs J. Hawksford or Mrs J. L. Mead at the Depart-
ment of Electrical Engineering Science, University of Essex, Wivenhoe Park, Colchester ve4 3SO (Tel. 0206862286 ext. 2262/2299)

Third Marisat shore station commissioned

Japan's maritime-communications shore station, for use with the Marisat (Maritime
satellite Communications) satellite above the Indian Ocean, was officially commissioned on November 18. The station, which is
located at Yamaguchi in the western-most part of the main island, was completed in September by the Nippon Electric Co. Ltd (KDD), Japan's international communica(KDD), Japan's international communica-
tions company. KDD's Intelsat standard A earth station is also located on the same site. The new station can provide, via the Mar-
isat satellite, 22 high-grade telegraph lines isat satellite, 22 high-grade telegraph lines
and two telephone lines between land suband wors and ships in the Indian Ocean and
scribers
the water off Japan and Southeast Asian the water off Japan and Southeast Asian
countries. It is the third station of its kind in the world and the first to be capable of accessing the Marisat satellite over the
Indian Ocean. Indian Ocean. The other two stations, which
have access to Marisat above the Pacific and the Atlantic oceans, are located in the USA, one at Santa Paula in California, and the
on other at Southbury in Connecticut. Since the
Marisat system can now cover almost all the waters of the world it not only ensures a high standard of world-wide maritime communications services and efficient operation
of ships, but also provides better safety and distress services. The Marisat station has a duplex configu-
triten ration and a 13 m -diameter Cassegrain an-
tenna, which is commonly used for the C and Lbands. A network control proceessor assigns
the channel and controls the line connection the channel and controls the line connection
between ships (both at sea and in ports) and
and subscribers or shore stations, perform elegraph and telephone signal and supervises the status of lines.
In addition, the Marisat system, which is intly owned and operated by several US services for facsimile and data transmission All of these services are, of course, only
available to ships equipped with a Marisat available to ships equipped with a Marisat
ship terminal. A typical ship terminal conshist of an r r.f. and antenna assembly mounted in a water-proof radome above deck and a communications console installed below
deck. NEC, together with Anritsu Electric deck. NEC, together with Arritsu Electric
Co. Ltd of Tokyo also manufacture such a terminal.

Picture shows a Jetstream T. Mk 2 aircraft, th irst of sixteen being delivered to the Royal
avy. On-board equipment includes a static Navy. On-board equipment inclu bes a static
nvertor, Model $060-05$, made by Brandenburg Ltd. The Model $060-05$ is a ree-phase unit delivering 115 V at 400 Hz for he aircraft's electronic equipment. It operates ower of 1500 OVA. Output frequency and vitage are maintained constant over a wide ange of input voltages and load variations.
The sixteen aircraft, which will replace Sea The sixteen aircratt, which will replace Sea
finces currently in service in an observer raining role, are manufactured by the Scottish
Division of British Aerospace's Aircraft Group.

Post Office meets Government's

financial targets

According to a statement by Sir William
Barlow, the Chairman of the Post Office, continuud stable prices and a vigorous drive
for increased business has enabled the Post for increased business has enabled the Post
Office to achieve results which show that the Corporation is still meeting
targets set by the Government targets set byadited results show that in
Interim unaut Telecommunications, the Post office had an income of $£ 1549.1$ million and a profit after
interest of $£ 144.7$ million over the half year to September 29, 1978. Figures for the full year to March 31, 1978, show a $£ 2924$ million income and
results for the results for the full year showed an income of
$£ 1325.1$ million and profit of $£ 40.4$ million and for Girobank and Remittance Services, $£ 77.9$ million and $£ 0.7$ million respectively. Corporation figures, again for the full year,
give an income of $£ 4183.2$ million with a
profit before dividend and taxation of $£ 367.7$ million. The financial resiuts for the cubrent year, for each of the three main businesses, are consistent with their full year targets set ions this represents 6% return ommunica tions this represents 6% return on mean net
assets at replacement costs. Mr Barlow suggested that the half year results reflecte the increased use which was being made of
the Post Office services This, he said, was partly due to the fact that telephoné rentals and call charges had not increased for more than three years and postal charges had been
frozen for 18 months. Telephone traffic had frozen for 18 months. Telephone traffic had
continued to increase and determined efforts were being made to improve the quality of
the international telephone operator service, he international telephone operator ser short which Mr Barlow consid
of the standard required.

Product liability conference

	those concerned with
	manufacture, distribution, purchase or
	of industrial products. Mr Janner will als
its	
through h	new anxieties created by "The Supply
	Goods (Implied Terms) Act" and "Th
ment for Leicester West, said when th	d
	Royal Com
manufacture or marketing of produc	Compensation for Personal Injuries (th
	Pearson Committee Report, 1978
our law with grave concern and in prepar	Anthony Jolowicz of Trinity College,
n for change. He referred to the La	
ns, the Royal C	
C	
	ren

Government enters mobile radio business

The British Government has now gone into
mobile radio after its acquisitions a few years mobile radio after its acquisitions a aew years
ago with Ferrantr and the more recent investment in Inmos Ltd. The National Enterprise Board (NEB) and Berec Group Ltd (formerly Ever Ready Company (Holdings) Ltd) have joint company to acquire the business of Burndept Electronics (ER) Ltd, a wholly owned subsidiary of the Berec Group. It is
planned that the NEB will invest $£ 510,000$ in Burndept in exchange for 51% of the equity,
with Berec retaining a 49% holding. This with Berec retaining a 49% holding. This
investment will enable the company to exinvestmentwing markets and also to develop
pand in existing additional products.
Burndept Electronics, who manufacture a
wide erange of tor wide range of two-way radio communica-
tions equipment, employ about 400 people and are located in Erith, Kent, and Biggleswade, Bedfordshire. They supply personal
radios to the majority of UK police forces and radios to the majority of UK police forces and
also to a variety of industries. The company also manufactures a full range of vehiclemounted radio equipment, base stations,
complex radio control schemes and eme gency rescue systems.
In the last six years Burndept has made
 to conc
ness.

News in brief

The Post Office is anxious to do the righ thing in relation to microwave radiation exposure and are, within their own powers,
seeking to allay the fears currently bein expressed by the media. They are providing attenuators for new inland microwav radio contracts to reduce the power fed to
antennas by an order of 20dB, when ecessary, thus reducing the radiation fro he antenna. Instructions are also bein o ensure that the power inputs to the an ennas are either removed, reduced suf ficiently or measured to co
radiation level is permissible.
earchwater, perhaps the world's most ad he RAF's Nimrod aircraft. The radar and equipment division of EMI Electronics a ayes, Middlesex, delivered the first produc Defence on November 7 last year.
Searchwater is the result of more than six ears of research and development work by om the Royal Signals and Radar Establish ment at Malvern, Worcestershire. The rada ses its own computer to detect, measure rack and classify its targets and its power
and versatility have already been demon and versatility have already been demon-
strated during extensive flight trials. At very
long ong ranges Searchwater can even detect targets as small as the periscope of a sub-
merged submarine, say EMI. During the six years of its development, designers con-
tinually modified Searchwater to accommonually modified Searchwater to accommo date the latest electronic techno
the rapid changes taking place.

Tandberg ends Norwegian operations
he Norwegian Government recommended to the manage ment of Tandberg Radiofabrikk A / S that the company close down their trading operations
with effect from the next day (Dec. 14) Despite this, the government has pledged to
continue to support the company with a view continue to support the company with a view
oo restructuring the special product divisions o restructuring the special product division
of the Group that have a continuing commercial future. In addition, a sum of 50 company two days before would still stand company two days before would still stan
and would be employed for an orderly wind down of the opprations in Norway and to vestigate the remaining operations. sidiary companies and other represen atives worldwide, including the Leeds com pany Tandberg (UK) Ltd, the most tuccessfu ver $661 / 2$ million.

Audience response to wavelength changes document issued by BBC Radio says tha channels on their new wavelengths, is better han it was before the introduction on the
3rd November, 1978. The majority of lisners questioned four days after the change aid that reception had improved o remained the same and only a small proporion reported that their reception had de
eriorated. The BBC is examining those areas where it is known that people are experien cing poor reception.
Figures from the normal BBC Daily Audence Research Survey were as follows ion was now better on Radios on was now better on Radios $1,2,3$ and those reporting that reception had deterio rated were $6 \%, 10 \%, 14 \%$ and 12% respec dely. Listeners reporting that reception was about the same on Radios $1,2,3$ and
$49 \%, 55 \%$, , 22% and 53% respectively. A preliminary examination of listening
A
A figures for the first three days on the new avelengths show a slight increase in
diences for Radios 1 and 2 and no chang udiences for Radios 1 and 2 and no chang

Maritime radar to be

 fitted to Nimrod In Wh 1 . 1 .
V.d.u. health hazards warning

TASS, The Technical, Administrative and Supervisory Section of the Amalgamate
Union of Engineering Workers, is warning its committees of representatives of the potencom haeath h hazards associated with the use o
visual display units. This warning comes in visual display units. This warning comes in a
document, from the general secretary o ocument, from the general secretary of vidence shows that unless a v.d.u. or ter minal is used correctly there can be potential ment is concerned specificically with the in roduction of these units, in areas of clerical epresentatives, the conditions in which .d.u.s should be used.
According to the document, clerical work deally requires brightly lit work areas, pref
rably near daylight, whereas v.d.u.s are bes used in shady conditions. This contradictio heans that the v.d.u.s.s are seldom used unde he correct lighting and, in some cases,
reflections on the screen can be brighter than he projected image. The doceument sughests
that offices in which v.d.us are used should hat offices in which v.d.us are used should here necessary for work areas. The health hazards associated with v.d.u include visual fatigue, stress, posture ail
ments and radiation exposure. TAS attempts to give the causes of these afflic-
tions and describes in quite considerable detail the symptoms experienced by the sufferers. Visual fatigue they say is caused by glare, reflections and lack of contrast on the from slow computer response times, poor environmental conditions and 'the information load'. Posture ailments such as back-
ache, headache and aching muscles are ache, headache and aching muscles are
blamed on the bad standard v.d.u. layout, the fact that the screen is usually above the keyboard. This, says TASS, imposes an
immobility which leads to the aches/pains described.
Radiation exposure is the cause of major concern to TASS because they say that the health hazard has not yet been determined
However, to minimise risk they suggest that v.d.u.s should be frequently serviced by qualified engineers and the front of the tube
covered by a gass panel. They also suggest covered by a glass panel. They also suggest
that the set be enclosed in a metal case to give maximum protection in case of explosion. As a guide to office committees who may
negotiate agreements on the introduction of v.d.u.s. TASS gives a total of 14 recommen-
dations. In addition to resular maintenance dations. In addition to regular maintenance of the units, they suggest that the screens tested for glare and reflections and that tested for glare and reflections and that
ambient lighting be reduced to below 300 lux,
with additional local lights being fitted where necessary for ordinary clerical work. One recommendation suggests that each piece of attached stating how it should be operated and specifying the health hazards which
occur if the safeguards are not followed.

News in brief

Strathearn Audio Limited, the Belfast high-
fidelity equipment manufacturer established by the Government five years aso is to close by the Government five years a ao, is to close,
The reason for the closure is that the Treasury is unwilling to consider providing ad-
ditional funding until the autumn of 1979 , by ditional funding until the autumn of 1979 , by
which time their proposed association with which time their proposed association with
Aiwa would have been in effect and the company's viability would have been as-
sured, because of heavy debts. Despite the sured, because of heavy debts. Despite the company chairman's faith in the company light at the end of the tunnel and a very real future ahead - the Treasury feels unable to
provide them with the necesssary funds to pay for the development of new products and: pay for the developme
ents a successful solution to the probdvancing technology, he says, cost may be expected to fall to the point at which adaptive antennas will be used ncreasingly by the broadcasters, escially when the fourth channel

ntenna work in ESA

hree years ago at the last IEE antenna onference, the European Space Agen y's activities, maing tonnas were de cribed. Since then, several of thes activities have been completed and new developments have started. A paper ${ }^{6}$ by Aasted from ESA reviews the presen ESA.
A major part of ESA's work in pay oad antennas has been in the develop ment of dual-polarized reflector an ennas. This has led to a better under ism and has also resulted in the deve opment of new antenna types having much improved cross-polarization per ormance. One example is the off-se reflector antenna which, though preems due to its assymetry, is now prime contender because of improved feed designs.

reflector antennas become impractical for small beamwidths and array antennas may be preferred. These also allow the use of multiple simultaneous now testing an L-band 19-beam and are ystem which is to be used for earth coverage from a geostationary satellite. As one moves to the higher frequency bands ($11 / 14$ and $20 / 30 \mathrm{GHz}$) and nararises for wimproved $\left(1 / 2\right.$ to ${ }^{3 / 4}$) the need the standard ranges are likely to be increasingly affected by multipath effects. ESA is therefore investigating the near-field measurement technique. Of the three scanning methods the Agency has chosen to develop the tal facility is now being set up at the Technical University of Denmark.
ESA is presently developing a standard cardioid type radiator for S. telemetry and telecommand into this band, or even higher. The antenna is designed to be boom-mounted on top of a payload. They are also planning to avelop reflector-type, multiple beam the higher 20 and 30 GHz bands. The realisation of these antennas wil require tight tolerance reflectors and a new class of feed started and that will be
intensified in the next two years. So far, ESA's work in propagation ha concentrated on the $11 / 14 \mathrm{GHz}$ bands. Data from ten radiometers stationed across Europe have been analysed and have formed the basis for the European verified with direct measurements from OTS. The Agency is also developing radiometers for the 20 and 30 GHz bands. At the higher frequencies, however, says the ESA paper, deep fades
may occur which radiometers are un'able to record. Because of this a propagation experiment is planned using H SAT, which will carry a beacon for the purpose. In addition, ESA will be carrying out diversity experim
solve the fading problem.

To be continued

References

4. Moxon, L. A., Radio Society of Great Britain, High-frequency antennae and proservice, pp 83-86, Part
service, pp $83-86$, Part 1.
5. Windram, M. D., Independent Broadcasting Authority, Crawley Court, Winchester,
Adaptive antennas for u.h.f. broadcast reception, pp 30-35, Part 1.
6. Aasted J,
reception, pp Jo.European Space Agency, in EAA, pp 230-231, Part 1 .
All IEE Conference Publication Number 169, Antennas and Propagation, from Internatio-
nal Conference on 28-30th November, 1978 .

Radio communication in tunnels

A note on the "split-path" paradox.

by K. F. Treen

From time to time, suggestions are made that radio propagation, (particularly with reference to the private mobile radio-frequency spectrum) throughout introduce excessive losses, could be achieved by receiving the signal with a suitable antenna at the end of a straight portion and then connecting this antenna to a second antenna which would direction. In terms of propagation losses, conventional available powers and antenna gains, this is not a very practicable arrangement

PASSIVE COMMUNICATION in tunnels is not comparable to the passive reflector systems used in some micro-
wave links, either as the main reflectors in a line of sight link, where they are used as means of avoiding feeder losses, the shortest path. In these cases the wavelengths are small and reflector sizes are very large in terms of wavelength.
For the pu
For the purposes of this note, propagation loss is calculated as a free-space
attenuation which, between is attenuation which, between isotropic
antennas, is $(4 \pi r)^{2} / \lambda$ where r is the range and λ the wavelength in the same units.

This expression is optimistic for most tunnel conditions and available wavelenths; in practice, signal strength
culated.
Consider a the transmitter at one and a receiver at the other. If the transmitter effective radiated power (e.r.p.) into the tunnel is W_{t} watts and the receiver antenna gain is G_{r}, the tunnel end to end attenuation considered as free space, is given by
$(4 \pi r)^{2} / \lambda$. With a transmitter e.r.p. of W, watts and a receiver antenna gain of G_{r} the r.f. power fed to the receiver is given by

$$
\begin{equation*}
w_{t} \times\left(\frac{\lambda}{4 \pi r}\right)^{2} \times G_{r} \text { watts . } \tag{1}
\end{equation*}
$$

Assume a bend in the tunnel at a point distant l from the source and around which significant propagation will not auxiliary antennas, one directed normally to the transmitter and the other to
the receiver. Let the two antennas be eder cable and let their respective gains by G_{1} and G_{2}
t the output of the auxiliary receiving antenna is

$$
w_{\mathrm{t}} \times\left(-\frac{\lambda}{4 \pi l}\right)^{2} \times G_{1} \text { watts. }
$$

This power is fed without loss to the auxiliary re-transmitting antenna,

$$
W_{\mathrm{t}} \times\left(\frac{\lambda}{4 \pi l}\right)^{2} \times G_{1} \cdot G_{2} \text { watts. }
$$

The distance to the final receiver is the receiver is given by:

$$
W_{\mathrm{t}} \times\left(\frac{\lambda}{4 \pi l \mathrm{l}}\right)^{2} \times G_{1} \cdot G_{2} \times
$$

$$
\left(\frac{\lambda}{4 \pi(r-l)}\right)^{2} \times G_{r} \text { watts }
$$

Equations (1) and (2) represent the direct' (i.e. directly through a straight tunnel) and the 'indirect' signal strengthion respectively. It is clear that than equation (2). Dividing (1) by (2) we than
get:

$$
\frac{16 \pi^{2} l^{2}(r-l)^{2}}{G_{1} G_{2} \lambda^{2} r^{2}}
$$

Applying practical values to a system situated at the end of the tunnel and from the transmitter
et frequency $=450 \mathrm{MHz}$; hence wavelength $(\lambda)=0.67 \mathrm{~m}$.
et length of tunnel $(r)=2000 \mathrm{~m}$
Let bend be at $1000 \mathrm{~m}(l=r / 2)$.
Let receiver antenna gain $\left(G_{r}\right)=3 \mathrm{~dB}$.
(2:1)
Let back to back antenna gains each equal 8 dB . (6.31:1)
hen from equation (1), for the direct is equal to:

$$
5 \times\left(\frac{0.67}{4 \pi \times 2000}\right)^{2} \times 2 \text { watts. }
$$

$=7.1 \times 10^{-9}$ watts, or -81.5 dBW , a very adequate signal strength Equation (2) gives the result for th

$$
\begin{aligned}
& 5+\left(\frac{0.67}{4 \pi \times 1000}\right)^{2} \times 6.31 \times 6.31 \times \\
& \left(\frac{0.67}{4 \pi \times 1000}\right)^{2} \times 2 \text { watts. }
\end{aligned}
$$

$=3.21 \times 10^{-15}$ watts or -145 dBW , too weak for reliable operation
The difference of 63.5 dB is given directly by equation (3). It is also apparent, by inspection of that equatio that the difference value is maximum intermediate antennas move from th centre $(l=r / 2)$ point in either direction, he r.f. input power to ' \sim receive ecreases, at first fairly slowly but a either end is approached the increase is
asymptotic to 6 dB as the distance to th ends is halved. In order to restore the 'direct' condition it would be necessary o interpose an amplifier with a gain given by equation (3) between the of course, effectively decouple them from each other), or alternatively in rease the gain of these antennas such that the total sum gain is:

$$
2 \times\left(\frac{G_{1} G_{2}}{2} \times \frac{16 \pi^{2} l^{2}(r-l)^{2}}{G_{1} G_{2} \lambda^{2} r^{2}}\right),
$$

which reduces to:

$$
\begin{equation*}
\frac{16 \pi^{2} l^{2}(r-l)^{2}}{\lambda^{2} r^{2}} \tag{4}
\end{equation*}
$$

Applying the values for r, l and λ given above, we get the sum again as

$16 \pi^{2} \times 1000^{2} \times 1000^{2}$
 $=8.79 \times 10^{7}$
 $=79.4 \mathrm{~dB}$.

Thus each antenna would need to hav a gain of approximately 40 dB , generall an impracticably difficult task in most tunnels. As the frequency is raised (hence generally falling outside the
band allocated for private mobile radio purposes) the production of high gain antennas becomes easier; on the othe hand, the free space attentuation increases. In some rare cases losses may be decreased by the generation of waveguide modes of propagation but

If we consider raising the frequency
by ten times to 4500 MHz . $\lambda=0.067 \mathrm{~m}$) and maintaining the same received power as in the direct case, (7.1×10^{-9}
watts or -81.5 dBW) with the same transmitter e.r.p. of 5 W (7 dBW) we would need a receeiver antenna gain of 23 dB instead of 3 dB , an almost impossible value to achieve for an omnidirec-
tional mobile antenna. Alternatively, the e.r.p. of the transmitter could be increased by 20 dB to 27 dBW (500 W) by using say, a 1 watt transmitter and a diameter which, at 50% efficiency, would provide a gain of 27 dB . For the indirect case at 4500 MHz , we can again apply equation (4) to ascertain the sum gain of the intermediate antennas. Sub stituting the values as before we get
$\frac{16 \pi^{2} \times 1000^{2} \times 1000^{2}}{0.067^{2} \times 2000^{2}}$
$=8.99 \times 10^{9}$
$=99.4 \mathrm{~dB}$.

Thus each of the two antennas would ned a gain of about 50 dB which at 50% 9.54 metres diameter, a somewhat mpracticable value.
In conclusion, what is shown above is not that radio communication through tems either as separate entities or in association with external mobile radio schemes have been achieved) but that sufficient illumination by the radio wave cannot be provided simply by
passive means. In many cases, radiating cables would provide the most satisfacory solution with a minimum of design problems and, when used with epeaters, would configuration.

A short curriculum vitae of Mr Treen appeared in the issue for August, 1978,
in which he was the author of an article on a proposed radiating cable system.

BOOKS RECEMED

BSO Directory 79 , edited by Linda Holland compiled by the people who produce the
ournal Broadcasting Systems and Operation, and is a comprehensive guide to broad in four parts; the first being a list of the world's radio and television authorities and stations, with addresses. Part 2 contains the activities of companies supplying equipment and services. The third part is a listing of equipment and services, classified by type,
with the names of relevant companies in with the names of relevan compand the final section contains srief descriptions of the equipment produced by
the world's manufacturers. Each section is he world
The 208-page book is extremely compre-

Wireless World a decade of growth

More and more people are reading Wireless World. This is clear from our topped the 70,000 mark. According to the Audit Bureau of Circulations the average number of copies distributed in the twelve months ending 31 st De-
cember, 1978 was 70,125 per issue. This was an increase of 1,608 copies per month on the corresponding 1977 circulation of 68,517
And here we are not merely noting an isolated increase for one particular year. If you look back over the past decade, this increase proves to be in fact one
more step in a continuing process of moreth. In 1968 we had a circulation of 48,401 copies per month. The graph then shows a steady overall climb with fluctuations of only about a thousand from the ideal smooth curve - giving an
average increase over the whole decade of 2,172 copies per month each year. And remember the journal is paid for by its readers, it's not a "give-away" as many are. People who buy it really need
These figures can only mean that Wireless World, now in its 68 th year of
publication but unwithered by age, is still doing its job. It is not only keeping
its long-standing professional and general readers, some of whom have taken the journal for thirty years or more, but continuously attracting new increasingly specialized field of electronics publishing. On average more
than one person reads each copy, and the total readership now amounts to 215,000.
An im
An important aspect of this growth is the continuing increase in Wireless
World's overseas circulation, which is World's overseas circulation, which is
now over 23,000 per month - a figure greater than the total circulation of some of our contemporaries in professional electronics publishing. Apart from the major groups of readers - in
all countries of Western and Eastern Europe, all states of the USA, in the USSR and China, in most countries of the African and South American continents, not forgetting Australasia, Scandinavia, the Indian sub-conilinent
and South-East Asia - you will find them in unexpected places from Afghanistan to Haiti, from Ethiopia to Iceland, from Alaska to Sri Lanka and on small islands like the Faroes, the
Azores and those in the Pacific and Indian Oceans. The "World" in our title really does mean what it says!
appear, according to the publisher, whe expresses the intentions The publishers are in forthcoming editions. The publishers are
B.S.O. Publications Ltd, P.O. Box 1 , 41 High Street, Wivenhoe, Colchester CO7 9EA, and Elements of Computer Science, by Glyn
Emery, with assistance from David Bale, is designed to accompany a first-year course in computer science. The treatment is such that no knowledge of computing is necessary to
take full advantage of the text: the very basics of logic and a logical view of problem solving are treated in three chapters, as are the various number systems. Programming is
built up from a discussion of the structure oo data and its control, through programming and operating systems, to a section on the
structure of languages. Although the main structure of languages. Although the main
part ov the book is concerned with digital
provided after each chapter. Glyn Emery is Professor of Computer Science at the Uni-
versity College of Wales, Aberystwyth. The versity College of Wales, Aberystwyth. The
book is published in paperback by Pitman Publishing Ltd, 39 Parker Street, London
WC2B 5PB, at $£ 2.95$.

Man-made Radio Noise, by Edward N Skomai, analyses and characterises virtually all the sources of man-made interference,
found in industrial society. Each type of noise source is given a chapter (automotive, power lines, etc) and is then related to other sources politan areas, at the surface. This exercise is then repeated to give a picture of composite
noise at specific altitudes over large cities. noise at specific altitudes over large cities
The book is extremely comprehensive in coverage and the treatment is thorough and
mathematical. Copious references are promathematical. Copious references are pro
vided. Costing $£ 16.15$ in hard back, this
 Reinhold Company
Wokingham, Berks.
computing, a section on the analogue variety
takes up the final chapter. Exercises are

MOBILE CB DANGERS If Mr Riley is trying to argue a case against
mobile c.b. based on danger to human life (January letters), he should produce more
convincing evidence than the results of artificial tests conducted by a university research group. I have no statistics to prove
it, but I doubt if radio-controlled mini-cabs, it, but I doubt if radio-controlled mini-cabs,
which have both inexperienced drivers as well as mobile radio operators, show an excessively high accident rate due to use of
the radio in heavy traffic. the radio in heavy traffic.
to operate a radio while negotiating a hazard, which requires both hands to be on the
stering wheel? The tests referred to by Mr steering wheel? The tests referred to by Mr
Riley, would, I am sure, produce even more alarming results if the drivers concerned were told to light a cigarette or change a tape
cassette, while negotiating the obstacle course set for them by the university. course set for them by the university.
The point which should be made about The point which should be made about
mobile c.b. radio is how many lives could be saved by intelligent use of it on the roads. I
am at present in correspondence with the Home Minister over this aspect of c.b. radio, in connection with the recent tragic pile-ups
on the M1 and M5. I firmly believe that prior warning could have been given in time to those drivers involved if some had been
equipped with mobile c.b. The time factor is equipped with mobile c.b. The time factor is
vital in fog and, under these circumstances, -any driver, especially truck drivers, would have the c.b. open all the time; therefore,
they would be prepared for advance warning they would be prepared for advance warning
of an accident from any c.b. equipped venicle of an accidentrea. This would allow time to
a mile or so ahead.
take take evasive action and also warn other
drivers in the vicinity, visually and on the drivers in the vicinity, visually and on
radio, of the situation. Mr Riley states that police "frown on" the
use of mobile c.b. If this is the case, what then is their reaction to the carnage of a motor-
way pile-up, which often includes their own way pile-up, which often includes their own
men and vehicles? Police patrol cars on the motorway are just as vulnerable as other vehicles in fog, and are equally helpless in
either warning or being warned by other either warning or being warned by other
drivers, or of summoning assistance if their vehicles are immobilised in the accident area. In my opinion, the time has now come for to start listening instead to the conclusions of their own motorway patrolmen; and then
make public their views of the benefits that make public their views of the benefits that
mobile c.b. radio could bring to motorway safety and the saving of human life. safety an
Tanlaw
House of

USA city (many, many thousands of miles) Invariably, if they suspected danger ahead
(or behind) they immediately dropped the mic' in their laps and coped with the situa tion, if any, then recontacted. Most impor the many 17-21-year-olds that I have a the mans in Los Angeles and Miami. Inciden tally my own (hireds) car had everything bu c.b. and I didn't miss it.
Mike Januszkiewicz

Ipswich
Suffolk

TELETEXT CHARACTER ROUNDING
My November 1978 article on the character decoder mentioned that the power unt originally supplied with decoder kits could not provide the additional 530 mA needed for the new board. (Current and very recent provide the extra, as long as the regulator heat sinking is sufficient.)
Since the board was orignally designed low power Schottky t.t.l has become avail able at prices only marginally higher than th standard type. With the same or only slightly
lower speeds, and a fanout of five into standard t.t.l., the low power Schottky (L.S.) can in most cases replace it directly with an Board IV built with L. i. ics apart from ${ }_{1 C_{2 x s}}$ (74121), draws 230 mA against 530 mA for the standard (the r.o.m. accounting for 50 mA in both cases), the only change
necessary being an increase in C_{20} f from 1 n to in5. On board ill the current fell from 570 to 270mA with four i.cs having to stay as
standard - IC
 different $_{7408) \text { which dra drive the television set and }}$ (7408) which dr
video interface.
vhis means that the two L.S. boards
This together draw less than the standard board power unit, saving the cost and inconvenience of renewing or adding to it, while with the new larger one 600 mA at least is left as ultrasonic remote control. It is understood that the kit supplier intends to offer L.S. i.c. sets as an option for these two boards. On board IV the timing component values
for the odd/even field detector monostable for the odd/even field detector monostable
$\mathrm{IC}_{\text {200 }}$ were derived from T.I. data for the

74121 and it has been found that with other
manufacturers' products the value of R manuacturers products the value of R_{202}
may have to be changed if the character
rounding iitters or rounding jitters or does not work.
Owing to a typographical error the Owing to a typographical error the
reference "Broadcast Teletext Specification

- BBC, IBA, BREMA - September 1976" reference IBA, BREMA- September $1976^{\prime \prime}$
- BBC,
was omitted from the list of references at the was omitted from the list of referenceser end of the article, and some therefore wrong.
numbers in the text are
Also the source resistance of a t.t.l. output in the high state is printed as 190 ohms instea of the centre of p.49, should read "two r.o.m

J. H. Hinton Cambridge

DISPLACEMENT
CURRENT
I am slightly alarmed by some of the statement how to get rid of it" (December 1978) and how to get rid of it" (December 1978). I
suggest that there would justifiably be an suggert that there would justifiably be an
outcry if the authors were to have written paragraph 5 as follows.
Since the inductance has now become a
transmission line, it is no ransmission line, it is no more necessary to it is necessary to do so for a transmission line The excision of 'magnetic flux' ' from elec-
tromagnetic theory has been based on arguents independent of the classical dispute.. an apparent negation of Faraday's law of distion
Displacement current (without the in ncept as conduction real and justifiable ent in charge transport - it is directly nalicgous to the time differential of mag magnetic theory $(\partial \bar{D} / \partial t$ instead t if you want to be precise). Displace ment current is neither a mathematical concapacitor it is a fund of a faulty model for a capacitor, it is
well's equations.
To those who have designed high capacitor or ind, interchanging between ne is common practice: the inductors and capacitors used actually look like short rransmission lines. Such circuits can be analysed using either of two methods; the
discrete approach in which case each line has nequivalent inductance and capacitance or he distributed approach in which case cha-
hacteristic and terminating impedances are acteristic and terminating impedances ar mportant. Paragraph 4 could be misleading ributed techniques: a transmission line used as a capacitor, or a capacitor appearing as a nce which is inherent in the costruction. This will become clear in the next paragraph.
Consider an ideal transmission line. For
analysis this has a few useful parameters; $L-$ analysis this has a few useful parameters; $L-$
the series inductance per unit length, $C-$ the sunt capacitance per unit length, $z_{o}-$ the
characteristic impedance $(=\forall L / C$ and $v-2$ characteristic impedance $(=V L / C)$ and v -
the characteristic velocity $(1 / \sqrt{ } L C)$. (And where do we get these parameters from? Why, of course, from electromagnetic theory
using \bar{B}, Π, E, T, and naturally enough \bar{D} the using B, H, E, S, , and naturally enough D the
electric flux or displacement vector.) The impedance measured at the end of an open
circuited transmission line of length d is
 mply $z_{i \text { in }}=Z_{o} / j \tan (\omega d / \nu)$. But if $(\omega d / \nu)$ is
…".'

House of Lords
Westminster
Whilst Mr Riley makes some valid points with the help of the OU (January letters) he
also makes some presumptions, e.g. that a driver using a "c..b," would continue to
discuss the evening's menu with his wife, etc., and simultaneously attempt almost impossible trials of judgement on the road.
Also Mr Riley feels that accident statistics would suddenly rise "if dozens of inexperienced c.b. users suddenly [took] to the
road." This assumes that inexperienced c.b. users would also be inexpe
Tell that to new taxi drivers.
Tell that to new taxi drivers. name, I am English, white and a road user,
also I value my life and others. Futhermore also I value my life and others. Furthermore,
I have had several years' experience on US I have had several years experience on
roads, notably, with about a "dozen" truck
drives who drive the rod crew and drivers who drive the road crew and p.a.
equipment belonging to the rock-and-roll equipment belonging to the rock-and-roll
group that I work for between every major
$Z_{\text {in }}=Z_{l} /(\mathrm{j} \omega d / \nu)+{ }^{1 / 2} Z_{(}(\mathrm{j} \omega d / \nu)$.
Using the transmission line parameters this gives $Z_{\text {in }}=1 / \mathrm{j} \omega(\mathrm{dC})+\mathrm{j} \omega(\mathrm{dL} / 3)$ which can be interpreted quite easily as a capacitor and inductor in series. To me that would seem a
very plausible mechanism for an internal very plausible mechapaitor
At 'low frequencies' a capacitor may well
be a good equivalent circuit for a particular be a good equivalent circuit for a particula
form of transmission line, but at increased frequencies the series inductance must be considered: eventually we must switch to ose barking up the wrong tree in the wrong ball park. For digital systems where har honics extend into the GHz region very ributed effects in what are nominally umped components.
P. I. Day
Maidstone

Ment.
The authors reply
We would like to make three points which we hope will clear up any misunderstanding that
Mr Day has over the statements we made. 1. He wrongly assumes that we say induct-
ance does not exist. Series inductance doe not existas as a separate entity, but distribute inductance does, linked to distribute capacitance as a measured property of
ransmission line defined as characteristic mpedance.
2. We are considering an ideal step response of a component and the incusion on unnecessary complication.
. If Mr Day believes that you can swap "magnetic flux" with the displacement vec
or (current) then where does this exist when a step is propagating down a transmissio ine? Catt, M. F. Davidson and D. S. Walton

Reference
ic ements, wireless
World June 1978, p. 61.

FERRITE ROD AERIALS In his article in the December 1978 issue "... collecting and concentrating the radiated magnetic field and channelling it
through a coil wound round the middle of the rod". He states that this approach is strangely unrewarding although it has pro-
vided a challenging exercise in field theory vided a challenging exercise in field theory and mathematics.
I am still lookin
Io the still looking for a lucid explanation as aerials and, for that matter, dielectric
receiving aerials can achieve gain. It is easy to get a physical picture of say a parabolic to get a physical wiecture of say a paraboilic placed normal to the direction of the trans-
mitter acting as a collector whose aperture is mitter acting as a colliector whose aperture is
effectively that derived from its geometry effectively that derived from its geometry
and concentrating the field at the focus.
Nothing utterly complicated is done to the Nothing utterly complicated is done to the
electromagnetic wave except possibly some electromagnetic wave except possibly some
shadowing for a distance behind the dish. Even a half-wave edipole or a Y Yagi array have
a physical aperture of which one can cona physical aperture of which one can con-
ceive reasonably easily but when one conceive reasonably easily but when one con-
siders the ferrite rod aerial used in many
receivers today it is difficult to siders the ferrite rod aerial used in many
receivers today it is difficult to grasp the
means by which an oncoming wave becomes means by which an oncoming wave becomes
aware that it is to be intercepted by some-
thing that is physically small in relation to its alieged effective aperture.
Does the wave, once it finds itself in the presence of permeable or dielectric material
somehow signal back to those adjacen portions of the oncoming wave that they have to 'concentrate' and, should this take a finite time, could one consider that a signa
comprising a series of very short pulses with complete gaps in between the pulses would be received by the ferrite rod aerial with no rial gain being achieved
Perhaps I have got it all wrong and the
nswer is associated with the ratio o avelength to the compar the ratio of physical size of the ferrite rod aerials. The concept of a ferrite rod or dielectric aerial as a transmitter conjures up a somewhat different picture; the 'concentration' is ocity theorem is not quite right after all. rocity theore
K. F. Treen
Totteridge
London N20

MILITARY

ELECTRONICS

Your admirable editorial in the January issue losses over the real dilemmas which face the practitioner of electronic engineering. Th first is that military and civil developments
are tightly enmeshed - or optimistically there has been a good deal of beating of swords into plough-shares. An obviou example is radar: this was originally a mili-
ary development but now forms the essence tary development but now forms the essence
of air traffic control, maritime navigation an hecking the speed of road traffic. The Loran navigation system grew out of devices to ai
bombing missions and Omega has obviou military potential for the USA. There is little difference between a 'spy-in-the-sky satellitit' urge to develop powerful electronic com puters was based on various military neods
but the EMI brain (or body) scanner would but the EMI brain (or body) scanner would not be possible without computer techno
logy. The progressive miniaturisation o computers has made it easier to put adequate navigational computers in aircraft, rockets and space vessels, whether civil or military finding industrial use so that our government says that the future of British industry de
pends on its learning to use microprocessor So long as all the large electronics firms ar substantially involved in military work, the ordinary citizen is expected to acquiesce in
Society has always tolerated a very smal minority of drop-outs, whether monks in the mediaeval past or hippies in the present day but it cannot continue to function unles course it may be argued that it should not continue to function.) A few can take refuge pects that the funding of research may sometimes be influenced by anticipation of military advantage. Very few of those who be prepared to scrap the lot because they regard some of the applications as evil. As the physicist Max Born wrote": "Science has
undoubtedly two aspects: it can be regarded from the social standpoint as a practical collective endeavour for the improvement of human conditions, but it can also be regarded
from the individualistic standpoint, as pursuit of mental desires, the hunger for

knowledge and understan philosophy, and religion. So she

So should electronic engineers feel a
special responsibility about armaments in special responsibility about armaments, in
the same way that some eminent American physicists felt that the original development
of the atom bomb had laced a special res. of the atom bomb had placed a special res-
ponsibility upon them, or should moral and political arguments be left to moral and political organisations? If the latter, is it
reasonable for electronic engineers who are reasonal erectronic engineers who are
probably depending on the armaments trade fror half their income (on average) to support organisations such as International Volun-
tary Service whose long-term aim is to tary Service whose long-term aim is to
eliminate the need for armaments? What about the short-term effect on employment
of any significant reduction in the armaof any significant reduction in the arma-
ments business? There are no easy answers mut we all need to arrive at some sort of answer.
D. A. Bell (Professor)
Yorks

- Natural Philosophy of Cause and Chance, re

Your leader "The death delivery business" in Your leader "The death delivery business"
the January issue is most timely. How can one pretend that the world expenditure on armaments is necessary for the defence of
democracy when the records of the two super-powers are of expansionism, cruelty and corruption, and when armaments are for internal suppression?
When hundreds of millions of people exist on such incomes as $£ 50$ per annum can one
justify such squandering of the earth's resources?
The military-industrial complexes of the two super-powers have more in common respective populations, and one of today's greatest dangers is that if the populations object to these unnecessary expenditures, these complexes may be tempted to indulge
in offensive acts in order to justify their own existence and continuation in being.
The left and right wings of society are equally to blame. It is unfortunate that many people delude themselves that they have no
responsibilities in this matter because they do not see the results of their handiwork Responsibility lies not only with those who
pull triggers but also with those who drive pull triggers but also with those who drive
orries, type letters and clean offices. Can
and hey not be made to realise that those who
would live by the sword must expect to die by would live by the sword must expect to die by are likely to die by it.

Roy C.
$\begin{array}{l}\text { Sutton } \\ \text { Surrey }\end{array}$

NTELLIGENTMACHINERY Recently I have been likening a microprocessor to a paralysed person in a wheelchair, because it cannot itself perform any actions. I now realise that I should have said
"a deaf and blind person in a wheel-chair"
. "a deaf and blind person in a wheel-chair"
because a microprocessor cannot itself gather information: it can only manipulate information which is fed to it in machine
readable form. In other words, intelligent machinery (November 1978 editorial) requires sensors and actuators as well as the
requer
information processor information processor. It is for this reason that the Electronic Engineering Department
of the University of Hull, for example, offers a
degree course in "Instrumentation and Con-
trol" as well as the course in Electronic
Encer Engineering (which includes a computer
option). There is more to automation than silicon chips!
D. A. Bell (Proféssor)

Yorks
Until his
his retirement in 1978 , Professor D. A. Bell was Professor on Electronic Engineering at the
University of Hull. - Ed.

DID YOU KNOW?

Epsilon spoils his otherwise interesting
article in the December 1978 issue by inco porating several errors.
porating several errors.
The inductance formula used to derive his expression for X (p. 67) is the well known
formula for a length of straight wire $L=10.21 \mathrm{og}(21 / r) u H$ from which $L=10.21 \log _{(}(21 / r) \mu \mathrm{H}$ from
$X=2 \pi f 0.2 \log _{\rho}(21 / r-1) \Omega$
$(f$ in MHz , all other dimensions in metres. I
have used r here for radius - I think D for a have used r here for radius - I think D for a
radius is highly confusingl radius is sighly confusing!)
Fig. 5 contained several important error
think the diagram should look like this:

Because of the incorrect drawing, the
sentence including "... (but nowe that this expression is not applicable when x is less expression is not applicabie when x is less
than d)..." became misleading. It is true, however, for the drawing as shown above.
The reason is, of course, that for high frequency currents, skin effect keeps the current to the surface of the centre conduc-
tor and hence both i and H 倍 tor and hence both i and H are zero within.
Likewise, in the outer conductor, skin effect keeps the currents to the inside surface of it. The author explains the zero ground plane
current in terms of magnetic effect and current in terms of magnetic effect and
mutual inductances. However, a valuable alternative approach is to regard it in terms of field boundaries. The outer conductor
of the boundry (and the inner conductor the other) for both the electric and tor the other) for both the electric and
magnetic fields as in a waveguide. Thus the
current on both the conductors forms the carrent on both the conductors forms the
field boundary and all of the current flows in field boundary and all of the current flows in
these boundaries. Since skin effect keeps the current to a thin inside layer of the outer
conductor there can be no field and no conductor there can be no field and no
current elsewhere current elsewhere. Thus at very low
frequencies where the skin depth is thick comenearedes where the suter conductor wall
thickness a resistive volt drop will occur thickness a resistive volt drop will occur
along it and current will flow in parallel paths along it and current will flow in
like the "infinite" ground plane.
he spectra of these two pulses is totally, frequencies, whereas Fig. 2 has a fall-off as $1 / \omega$ at high frequencies. These are equivalent Any distavction the ear makes between Any distinction the ear makes between
them will probably be the result of the energy rich h.f. spectrum associated with the abrupt
level change in Fig. 2 at $t=0+$ I think this evel change in Fig. 2 at $t=0+$. I think this
point is the same as Mr Coleman's. B. J. C. Burrows

Ewelme
Oxford Epsilon replies:
As expected from previous discussions with colleagues, my article "Did you know?" in
the December 1978 issue aroused many comments. Some readers wrote to me con-
cerning the capacitor problem (I shall deal with their comments at a later point in this reply) and others, while not disagreeing with
my explanation concerning the screening of my explanation concerning the screening of
the coaxial cable, had clearly had many nfortunate experiences to the contrary.
Regrettably, one or two minor errors did appear as follows. In the second equation on page 67 the r.h.s. should be divided by two, and a 2π should appear in the third equation.
d in Fig .3 refers to the inner conductor rather than the outer as originally shown, and on balance Ifind Mr Burrows's version of Fig. 5
more satisfactory. It is hoped that the minor more satisfactory. It is hoped that the mino
errors did not interfere with readers' enjoyerrors did
ment.
Mr. Bur

Mr Burrows's letter is concerned mainly with the explanation of coaxial cable
screening in terms of field boundaries and skin effects. I have no objection to treating a
cable as a TEM waveguide (except that this cable as a TEM waveguide (except that this
leaves the original question unanswered), but do raise a protest at the invoking of skin effect as the reason that screening exists. To begin with, skin effect does not cause all the
current to flow in the inside of the cable, and for many of the frequency ranges of commercial interest appreciable currents flow on the outside of the braiding. Furthermore, even if currents were limited to the inside of
the braiding, the problem as formulated in the braiding, the probiem as formul If the outer braid of the cable is broken, the
solution to the current flow is clearly solution to the current flow is clearly
geometry and frequency dependent. How-
ever, certain observations ever, certain observations can be made. The
cable is no longer screened, a forward current cable is no longer screened, a forward current
will flow in the braiding, which will have a will flow in the braiding, which will have a
potential above ground, and return currents
Epsilon would like to comment on the current rout
circuit?
One fin One final point concerning ground planes. Even an infinite ground plane has resistance
and inductance. The "spreading" resistance around the two connecting points gives it between connecting points gives it inductance.
: Regar Regarding the discussion on audibility of
phase errors (Letters, December issue and earlier), a sine wave chopped into short
bursts with varied start and stop times cannot be used for audibility tests. If we consider
the two extreme cases of Fits. 1 and 2 where the two extreme cases of Figs. 1 and 2 where
the sinewave is switched at zero or at peak $\bigcap_{t=0} \longrightarrow \quad \Omega$
will flow in the earth plane. Their path (or
rather, that of the elementary current filarather, that of the elementary current fila-
ments) will follow a route which gives the
lowest loop inductance, i.e. the current will lowest loop inductance, i.e. the current will
be concentrated under the projection of the e concentrated under the projection of the Turning now to the capacitor problem, some readers expressed doubt about the given solution, preferring instead to seek
comfort in their own explanations. These comfort in their own explanations. These
mainly relied on the presence of losses, mainly relied on the presence of losses,
caused by resistance or arcing (solutions
ahich which I Itccluded by the reasoning given in
the article), or by radiation which he article), or by radiation, which some gnored the statement that inductance was intrinsic.
One rea
One reader raised the interesting problem Itered slowpys when the capacitance is by changing the dielectratic constant ines or cases the same inconsistency betw. In such answers obtained by the conservation of charge or of energy appears. The explanation
lies in the mechanical strain between the lies in the mechanical strain between the attraction and which changes to account for the energy difference.
Further insight into the original proble ave distrined by allowing the capacitors to
and have distributed constants and using a con-
figuration which precludes adiative energy. Consider the circuit shown in Fig.1, which consists of two capacitors made in the form of coaxial cylinders. The one end but open circuited lines, closed at substitution for the familiar tubular
capacitors.
One capacitor is charged to a voltage V and
is connected to the other to form a completely closed system from which energy cannot escape. The capacitors can operate at superconducting temperatures, so that there
are no resistance losses. Sketch the voltag along the capacitors as a function of time.

Fig. 1 The answer is given in Fig.1, and to forestall further questions, note that: (a) Energy and charge are conserved. (b) The current flow also has the form shown in the figure, with a peak amplitude given by V / Z_{0}, (Z_{0} is the characteristic impedance of the coaxial structure). (c) Since current is finite, and in any case can

be made small by making V small, it can always be below the critical level at which
superconductivity is suppressed. (d) By a similar reasoning, arcing need not
(e) There is no escape of radiation.
(f) There is no such thing as a perfect open circuit, and end effects will modify the squar wave shown. However, ents.
validate the above arguments.
(g) No matter how short the capacitor length, (g) No matter how short the capacitor length,
the oscillating nature of the discharg

Point (g) is really the whole crux of the matter, since it guarantees an oscillation which can temporarily store the "missing" nergy in inductive fielas.
I hope that the more refined model wil assist readers in their further understanding assist readers
of the subject.

FOUR YEAR DEGREE

COURSE

I have noted your article entitled "New four year degree course in electronics" which was published in the December issue of Wireless
World As you well know, there is consider able interest in the establishment of a variety ff four year courses in this country prompted y the UGC's initiative in 'managemen enriched United Kingdom are following a similar oute on a free-lance basis and, as you cor ecty report,
It is, of course, appropriate that any in-
itiative of this kind should be given its place itiative of this kind should be given its. plac in the technical and academic press but
hould not escape the notice of editors these journals that courses of four years dration have been operated for many year in the United Kingdom. I am not thinking of
our year sandwich courses but of genuine four year academic courses such as the one which Hull has made available since th mid-1960s. This is a special degree course in
electronic engineering which not only qualifies the successful student for the degree of Bachelor of Science but also a students who have achieved a high academic standard. Consequently, graduates from the our year course in Hull have had the ex-
perience of the extra year which we now recognise as an enhanced degree course. It was Professor David Bell, my predecessor, who established the four year course in the for his remarkable foresight. Relatively minor changes are taking place in the Department at the presen thoe component subjects which now find favour with bodies such as the IEE and the UGC. Department of Electronic Engineering, University of Hull.

REGULATOR FOR CAR
ALTERNATORS
We would like to draw your attention to the article eor August 1978 edition. As electronic
in your design engineers we would lile to express
our dissatisfaction with the article, and feel our dissatisfaction with the article, and feel
very displeased that such a poor design
should appear in Wireless World. An example of the design deficiencies involves
suming a 14.4 V line. This device (MJE3055) has a specified minimum $h_{\text {Ef }}$ of 20 at $I_{C}=4 \mathrm{~A}$
and $V_{\mathrm{CE}}=4 \mathrm{~V}$, which would produce a collector current of 2.8 A minimum. Assuming a
nominal 3.5 R rotor resistance the device nominal 3.5 R rotor resistance the device
would then try to dissipate 13 W . If the machine has a nominal 30 A output, the regulator may limit this to about 2 A due to
the lack of available field current. Neither of the ese are desirable features although the former will assist R_{1} ding out moisture from the unit!
The maximum collector current of Tr_{1} will be 6.3 mA , of which 2.7 mA will flow in R_{2}
leaving is desired to turn off Tr The device specified is desired to turn off r_{3}. Thedevice specified
for
Tr $\mathrm{r}_{2}(2 \mathrm{~N} 353$) has a minimum gain of 25
 collector current could be 90 mA with 50 mA
still flowing as base current in $\mathrm{Tr}_{\text {. }}$. This means that a minimum collector current of means that a minimum coliector current of
1.0 A could still flow, with Tr_{3} dissipating 11 W and the machine output being a minimum of 7A. Assuming a higher gain for Tr_{3} to help saturation merely worsens the minimum
output figure. This cannot be regarded as satisfactory.
be noted also that the worst case specified saturation voltage of a 2 N 3053 is
1.4 V with $I_{f}=150 \mathrm{~mA}, I_{h}=15 \mathrm{~mA}$, sa increasing the available base drive to Tr_{2}
could not guarantee to turn Tr_{3} off even with could not guarantee to turn Tr_{3} its existing inadequate base drive.
The selection of a nominal zero temperacure coefficient is not satisfactory in view of
the negative temperature coefficient of the the negative temperature coefficient of the
terminal voltage of a lead acid battery. If a part charged battery is being charged from a relatively high output machine, the battery and charging current increase. The battery temperature will then rise further and so on. This can rapidly damage yielding hot concentrated sulphuric acid This tendency may be exacerbated by th igh va
Oage. also apparent. It is unlikely that the range o setting provided by R_{g} will cope with rea Tr_{2}. The wiper of R_{9} may possibly lift off due ${ }^{\mathrm{Tr}_{0} \text {. vibration and put the machine on to nearly }}$ full field and maximum output. Sensing the prone to trouble arising mainly from voltage drops across the switch, connections wiring
and fuses if fitted. No useful indication of the method of selection of C_{1} is given. A better design would include circuitry to induce switching. The circuitry to drive the warning
light would be unnecessary if a nine-diode machine was used. The extra three diodes provide an additional isolated positive sup. ply, and can b
machines.
We feel that a
major feel that a minor fausits in which has sosophy, design and component selection should not be
published in any magazine, and particularly not in a semi-professional magazine such as Wireless World. We wonder how many other designs would prove to have similar short-
comings, if subjected to a similar analysis. M. J. Newsome and S. A. White,

London, NW10.
Mr Watkinson replies:
The Watin of transistors follows a distribution curve where the peak is at the typical gain.
The percentage of units having worst case The percentage of units having worst case
gain is very small, as these units are at the tail
of the distribution. When dealing with the
alleged inability of Tr_{2} to turn off $T \mathrm{Tr}_{3}$ statisalleged inability of Tr_{2} to turn off Tr_{3} statis-
tics tells us that the chances of having two tics tells us that the chances of having two
devices which are simultaneously worst case
are are negligible, being the product of the two
probabilities.
 On my own unit Tr_{3} saturates at 0.3volts. 1
have not wasted my time measuring the minimum collector current. minimum coinector current.
1 am aware of the temperature coefficient of accumulator voltage, but I cannot see why
it is valid to assume that the temperature of the regulator tracks the temperature of the battery as the two are usually found in
different places on the vehicle. In my own vehicle the battery is not in the engine compartment, but the regulator is. Having accepted that the two components differ in simple good design practice.
No figures accompany the allegation about the range of adjustment of the pot, but the
fail-safe mode is deliberate The inductive current limiting of the alternator prevents current limiting of the alternator prevents
damage on full field. This is better than having no generator at all, particularly at
night. A friend drove his van around with full night. A friend drove his van around with full
field current for several weeks until he tired of topping up the battery and replaced the regulator.
It is no
It is no easy matter to install extra diodes
in an altern in an alternator. Not only would this render the unit a one-off, impossible to replace away
from home, but the extra parts, wiring and from home, but the extra parts, wiring and
connections required would consume more effort than making the trivial but effective circuit I have offered. I had nine-diode
machines in mind when I wrote about the machines in mind when I wrote about the
tortuous means used to drive a light bulb. The article clearly shows how to avoid trouble with voltage drops and if the in The prototype unit was constructed in 1973 and has given no trouble. The battery dates from before this and only requires octasiona
topping up.
Whis topping up.
Whilst heralding Wireless World as a
semi-professional publication Messrs New-semi-professional publication Messrs New
some and White descend to the sensational some and White descend to the sessatio
verbiage of the crusading tabloid in their attack, which does nothing to support their
shaky technical criticisms. In closing I should shaky technical criticisms. In closing Ishould
point out that the acid in batteries is dilute point out that the will save me when mine only; perhaps
explodes!

explodes! J. R. Watkinson.

MICROCOMPUTER

BUSES

would like to take up Mr Aylward's points cember letters).
I am endeavouring, with the support of the microprocessor manufacturers and a grea many professional microprocessor users, to
define a microprocessor bus standard for use with the new generation of 16 -bit micro processors. I do not believe that E78 is
suitable as a professional standard, for it suffers too many deficiencies to support the devices Mr Aylward mentions. I would like to invite anyone who is interested in this topic Paul L. Borrill
Mullard Space Science Laboratory University College London Dorking
Surrey

Frequency synthesizer

by R. Thompson, M.I.E.E.

Single frequency
Having looked generally at types of synthesizing circuit, three applications have been chosen to illustrate specific designs. The first example is a syn-
thesizer for an atomic standard. The problem is simplified here by approximating the hydrogen maser frequency to 1420.405 MHz , ignoring the last five significant digits. The frequency at 5 MHz , locked to the accuracy of the maser. This represents the type of synthesizer required for special purpose, single-frequency use,
Figure 21 shows a possible arrangement.
Because of the high frequency of the maser the synthesis is organised in two loops. One loop generates 1400 MHz and other loop synthesizes the residue, or intermediate frequency. An i.f. of 20.405 MHz is suitable to provide the high gain The 1400 MHz is generated by a $140 \times$ p.l.1. multiplier, followed by a $2 \times$ harmonic multiplier. A single-stage p.1.1. multiplication by 240 is not wsed because the output frequency would be
too high for the divider. The synthesis of 20.405 MHz can be carried out with a simple divider and p.1.1. multiplier.

Variable frequency

The next example has a very different requirement, the provision, of a
frequency which can be easily varied over a range of many decades, while retaining reference frequency stability. This requirement cannot be met simply dividers in a pll Apart from the prob lem of designing a v.c.o. capable of overating over several decades of frequency, there could be severe tuning time problems. The reference frequency
would equal the lowest frequency increment, which may be required to be a fraction of one Hertz. The loop bandwidth would have to be at least an order narrower than this so that the tuning wide changes in loop gain as the frequency was changed which would have to be compensated for if a reasonably constant damping factor is to be maintained.
Because of these difficulties the nor
synthesizer is to cascade synthesizing
yynthesizer is to cascade synthesizin of frequency control. Figure 22(a) shows the basic arrangement.
Selector switch D selocts
Selector switch D selects a harmonic by 10 and added to the harmonic selected by switch C. This combined frequency is divided by 10 and added to he Δf harmonic selected by B; and so fore a decimal number of times is theredigits being readily and independently ariable.
The disadvantage of this simple scheme is that the interface betwee stages is at widely varying frequency
This can be avoided by the arrangemen shown in Fig. 22(b). The cascading of tages incorporating 10 times dividers and mixers is similar to the previous cheme. However the frequency added harmonic plus $0.9 f_{1}$. This means tha the output of each stage consists of the ariable frequency plus a fixed offset This offset can be removed at the output of the final stage. module suitable for cascading in

Fig. 21. Arrangement of synthesis to obtain a 5 MHz signal locked to an
anner similar to that shown in Fig (b). The harmonic multiplier and 0.9 mixer/generator are combined in the one p.l.1. The fixed portion of the divider ensures that f_{1} is generated by the v.c.o when the selected value of C and D ar
zero. With the example frequencie shown N_{o} is 180 . Stepping switch C b ne increases the p.l.1. multiplication by ne, therefore adding 10 kHz to th output frequency. The outpu $1 / 2 \%$ and modules can be cascaded at will allowing smaller increments of requency. An advantage of the divide and cascade system is that loops can al operated at high comparison uning time, but the tuning time incre ment can be made arbitrarily small by ascading more stages and/or in easing the division ratio

.h.f. variable

As a final example; a typical v.h.f communications synthesizer has been hosen. The requirement is for a carrie equency selectable in 25 kHz channel requency range to be covered is comparatively restricted, allowing the use o a single p.1.1. with a variable divider igure 24 (a) illustrates a suitable arrangemen

WIRELESS WORLD, MARCH 1979

to pride a variable-frequency output at (a). Circuit at (b) avoids wide frequency difference between stages.

Fig. 23. Divider used in Fig. 22
ig. 24. Variable-frequency synthesize
r v.h.f. communications. Divider is
shown at (b).
 frequency of $5 . \mathrm{MHz}$ is a common choice frequency f around the optimum frequency for high stability crystal oscillators. The fixed divider reduces the reference to 25 kHz which is the required channel spacing. The p.1.1.
must multiply its input frequency by a must multiply its input frequency by a
factor of 6000 to obtain 150 MHz , increasing to 6800 for 170 MHz .
The multiplying factor is controlled by the p.1.l. variable divider. Because of
the high v.c.o. frequency a variable the high v.c.o. frequency a variable
modulus prescaler is used, giving a maximum frequency into the variable divider of 17 MHz . An early decode circuit is used with divide by N portion of the counter, allowing medium-speed ogic to be used.
As explained
10/11 variable-modulus arrangement allows the output to be incremented in steps equal to the p.l.l. input frequency. The three synthesizer control switches
are marked in channel numbers starting are marked in channel numbers starting
with 000 for an output frequency of 150 MHz and rising to 800 for 170 MHz . Each switch programmes a presettable decade divider to the number indicated on the switch, the final decade stage zeros on the switches therefore gives the required division of 6000 for 150 MHz , while 800 will give a division of
6800 for 170 MHz . If the setting switches 6800 for 170 MHz . If the setting switches directly a modified counter design can be used. Figure 24(b) shows the divider portion of such a circuit.
The variable modulus prescaler divides by $40 / 41$ and the higher scaling ratio may possibly allow the early de-
code circuit to be dispensed with. The least significant digit of the N counter is now $1 \mathrm{MHz}(40 \times 25 \mathrm{kHz}$). The N decades are therefore organised to relate decimal form. The ' A ' counter must count off the 25 kHz increments below 1 MHz ; that is a maximum count of 40 . The A counter therefore consists of a programmable modulo 4 counter, ountig 25 kHz incrents, fllowed increments.
The final decade counter again has a fixed preset, this time 1, and the four setting switches will be marked as fol-
lows:

Communications synthesizers are normally required to give a very pure buffer circuit is normally placed between the v.c.o. and the dividers. This buffer must have high reverse attenuation so that spurious frequencies generated in the dividers are not fed
back into the v.c.o. In practice a buffer would also be placed at the output of the

ig. 25. Synthesizer in Fig. 24 provides this general type of spectrum.
v.c.o. to isolate the synthesizer from spurious noise generated in the loa which could effect operation of the loop. a clean output signal is the compa ratively high 'comparison' frequency of 25 kHz . This allows a fairly fast loop which means that the loop will cance much of the low frequency phase nois The loned in the v.c.o.
igh-gain, second-order type with be lag filter. The high gain will minimis he comparison frequency componen at the output of the phase detector
This, supplemented by additional high This, supplemented by additional high
frequency filtering, will reduce the level of spurious frequencies produced by the of spuri
v.c.o.
The
The general form of output spectrum obtained with a typical communica Wideband noise measured in a band width equal to the channel bandwidth normally required to be $80-100 \mathrm{~dB}$ down on the main signal. Discrete spurious outputs are normally to be
$10-20 \mathrm{~dB}$ above the noise level. monics are normally much higher if iter is not included at the output of the .c.o. Levels of $20-30 \mathrm{~dB}$ down on the main signal are typical.

It has been shown that a variety of approaches can be adopted in meeting he requirements of generating on frequency from another. The choice of gide roach will vary depending on However it is true to say that advance in digital integrated circuits hav resulted in synthesizers now bein dominated by the p.1.1./variable divide type design. Integrated circuits are suppliers, flexible in their use und can able of operating over a wide range o frequency. These factors have resulted a radical change over the past five years in the accuracy, size and cast of cation in field equipments and in the laboratory.

Reference

1. Frequency Synthesis
. Phaselock Techniques 3. Phase-locked Loop System
ase-locked Loop Systems Pmiconducto

SIXTY YEARSAGO

The March 1919 issue was much concerned with getting the amaturs back on the air
after their enforced silence during the 1914. after their enforced silence during the 1814
18 war. We feared that the government having taken complete control of wireles communication, would "relinquish their hol
very reluctantly, and in their future activitie may totally prohibit the erection and the maintenance of a wireless installation by the amateur." A campaigning article in suppor
of the amateurs contained backing up statements by Guglielmo Marconi himself, Professor J. A. ("diode") Fleming and Professor
W. H. Ecles and ended with a call for readers' views. obviously the amateurs did get back.
But apart from the immediate and the practical, the magazine still had time for th
more esoteric and speculative aspects of more esoteric and speculative aspects of
radio science. Marconi, for example, wa asked in an interview for his views on wha
we now call SETI (search for extra intelligence) but then described as "com munication with the stars",
"Senatore Marconi then went on to state ligence on other stars. Dealing with the question of the language difficulty, he said that although it was an obstacle he did no
think it was insurmountable ' Y Yu see on might get through some such message as plus 2 equals 4 , and go on repeating it until an answer came back signifying yes - which
would be one word Mathematics must be th same throughout the physical universe. By sticking to mathematics over a number of years, one might come to speech; it's cer "Certainly co
if at all possible, must be effected the stars telegraphy; and the more recent discovery of degree places within signals to almost any ment of almost infinite our hands an instru great a acientist as infinite delicatore Marconi When so seriousty of hese possibilities it behoves the
sceptic to consider sceptic to consider his position.

Magnetic gyration

Understanding magnetic circuits by analogy with electrical circuits
by J．B．Williams B．Sc．（Eng），A．C．G．I．，M．I．E．E．

This article introduces the analogy between electrical and magnetic circuits． covering the basic theory and workings． The analogy is a consistent one and does not fail the modern test of energy which has changed many
concepts in recent years．The difference concepts in recent years．The difterence had for years been treating all our electric circuits in terms of charge，not current， and often electric field strength and charge densities．We abandoned these
concepts for circuit work many years ago

A LARGE PROPORTION of practising electrical and electronic engineers have only a hazy understanding of magnetic
circuit theory while being quite familiar with electric circuit theory．So wide－ spread is this among many with very different backgrounds that one is forced to ask whether the fault lies in the presentation of the subje
in the people concerned．
Many engineers are used to tackling problems outside their own field，such as those in heat transfer，by analogy with electrical circuits．The subject of magnetism，closely related to the famil－ very satisfactorily treated by this method．A confusing system of units has for many years disguised the fact that electrical and magnetic quantities lation by the same mathematics．As explained by＂Cathode Ray＂in the January 1973 issue，the introduction of SI has removed this first barrier by making the electrical and magnetic use of strange conversion factors． Most electrical circuit theory is based on the concept of impedances，both resistive and reactive，i．e．those capable of energy dissipation and energy
storage．An attempt was made to over－ come the lack of a suitable magnetic ＂impedance＂by using the concept of reluctance，which was supposed to be analogous to resistance in an electrical
circuit．However resistance is a dis－ circuit．However resistance is a dis－
sipative component and reluctance which is related to inductance，is a storage component．This makes for a very poor analogy．
Perhaps the biggest blockage to understanding was the link between the
electrical and magnetic circuits．The electrical and magnetic circuits．The
electrical current links directly into the magnetic circuit but the more usefu
parameter，voltage，seems to be left ou a limb
A method which largely overcomes hese problems and opens the way to an easier understanding is due to w．S．A． but does not appear to have had a wide circulation in this country．It is the aim f this article to intr wider readership
rmulae of electromagnetism to see th dimensional similarities
The first relationship is between magnetomotive force F ，the magne
＂voltage＂，and electrical current

$$
\begin{equation*}
F=N I \tag{1}
\end{equation*}
$$

where N is the number of times I that is producing F ，or more normally the number of turns．The second relation ship is between voltage and rate flux
cutting of flux ϕ ．This is the rate of change ϕ multiplied by the number of times it is linked，i．e．

$$
V=N \dot{\varphi}
$$ meability μ is linked to inductance that he magnetic circuit produces

$$
\begin{equation*}
L=N^{2} \mu A / l \tag{3}
\end{equation*}
$$

The term $\mu A /$ could be calledthespecific permeability as it is the modified value for that particular shape of magnetic

$$
L=N^{2} P .
$$

（4）
As N is a dimensionless number F has the dimension of amps，ϕ the dimension volts，and P the dimension inductance． The previous reluctance－resistance ana－ logy was b

$$
\begin{align*}
V & =I R \\
\text { and } F & =\phi S=\frac{\phi}{P} \tag{5}
\end{align*}
$$

where S is reluctance．However there is form

$$
V=\frac{Q}{C} .
$$

（6）
＊Analogs between magnetic and electrical
circuits，by Rudolph Buntenbach．Electronic circuits，by Rudolph Bo

Inductance is a storage not a dissipative parameter and hence so is permanence （equation 4）．Thus attempting to use
resistance as the analogous property for reluctance，S（the reciprocal of per－ manence）is not a happy state of affairs There is a much better analogy in equations 5 \＆6，capacitance also being a storage parameter．
circuit is not ϕ but rate of change of flu ϕ ．This means that we now have looking－glass circuit in which the＂vol－ tage＂has the dimension amps and the
＂current＂the dimension volts．The ＂current＂the dimension volts．The haves like a capacitor but has the di－ mension of inductance．Flux ϕ is seen to be analogous to charge Q ． Another way of checking this is t consider the
netic circuit．

$$
E=1 / 2 L I^{2}=1 / 2 P N^{2} I^{2}
$$

$E=1 / 2 F^{2}$
（7）
This can be seen to be analogous to the capacitive energy equation

$$
E=1 / 2 C V^{2}
$$

Magnetic－electric circuit link

Having explored the magnetic circuit and found it to behave in an analogous it is a looking－glass similarity，now look at the link or mirror itself．The basic equations＂\＆ 2 link the＂voltages＂and ＂currents＂on the two circuits．In addi－ magnetic impedance $Z_{m}(=F / \phi)$ and this should be related to the electrical impedance \mathbf{Z}

$$
\begin{gathered}
Z=V / I=\frac{N \dot{\phi} N^{2} \dot{\phi}}{F / N}=\frac{\phi}{F} \\
Z=\frac{N^{2}}{Z_{\mathrm{m}}}
\end{gathered}
$$

Equations 1 \＆ 2 can be seen to be the defining relations of a Tellegen gyrator with a gyration constant N ．This gyra－ or gyrates a voltage to a current times
N, which is the required relationship．An impedance in one circuit gyrates to admittance times N^{2} in the other circuit as in equation 8．The gyrator thus fulfils the requirements
magnetic investigating the simples understanding of the working some analogy．

Air－cored inductor

In Fig． 1 if V is a step function，the classic
circuit：
$V_{1}=V \exp -t R / L$
（8）

In the magnetic circuit ϕ is also a step function，from equation 2 ，and hence a can be calculated directedly but a short cut can be used by using the current－ to－voltage source transformation in Fig． 1 （c）and（d）．The voltage source and its resistor have the same properties as the current source and its resistor．This can short－circuit conditions for the two sources．
The circuit in Fig． 1 （d）is now familiar and we can write down the expression
$F=F^{\prime}\left(1-\exp -t / P R_{m}\right)$
by analogy to the standard capacitor

$$
\begin{aligned}
& \dot{\phi}=\frac{F^{\prime}-F}{R_{\mathrm{m}}} \\
& \dot{\phi}=F^{\prime} \exp -t / P R_{\mathrm{m}} \\
& \dot{\phi}=\phi \exp -\mathrm{t} / P R_{\mathrm{m}}
\end{aligned}
$$

Converting each term in this equation to its electrical counterpart yields equation 8 ． voltage is applied to the inductor（i．e．R is small and R_{m} large）ϕ is constant and
hence the F across P increases linearly． If V is an alternating source the elec－ trical impedance is $j \omega L$ and hence the

Tellegen gyrato

The gyrator is a theoretical circuit component like a resistor，capacitor or perfect transformer，but unlike these others a simple practical real－ transformer in that it links two circuits，but the link is between the voltage in one circuit and the current in the other．For this reason it is useful as the theoretical link between the
electrical and magnetic circuits．It is denoted with two semicircles facing each other．

Voltages gyrate to current sources multipled by N Resistances gyrate to conductances multiplied by N^{2} Inductances gyrate to capacitances multipled by N^{2} Short circuits gyrate to open circuits
Components in series gyrate to components in parallel
magnetic impedance is $1 / \mathrm{j} \omega P$ ．F and $\dot{\phi}$ are seen to be at 90° to each other as are V and I in the electrical circuit．
Nowhere in this discussion of the
inductor have we mentioned the flux This is the integral of $\dot{\phi}$ and is given by $\phi=P F$
which is analogous to equation 5 ．In the a．c．case this becomes sinusoidal like phase，thus leading to much traditional confusion．

Magnetic cores

At first sight substituting a core of a magnetic material merely gives a much larger value to P（large μ hence large P
from equation 3）but iron and ferrite cores are also conductive Much inge－ nuity has gone into minimizing the conductive paths，but they still exist， producing as it were small single－turn． secondaries distributed a round the
core．These can be approximated by one imped component as in Fig． 2.

The conductive path，being an ele ric circuit，is linked into the magnetic circuit via another gyrator where $N_{2}=1$ ， a series resistance and hence into the
electrical circuit as a resistance in parallel with the inductance．

Transformers

A transformer has another electrica circuit gyrated into the magnetic circuit secondaries can easily be added by put－ ting in more gyrators in series in the magnetic circuit．The primary voltag V_{1} causes $N_{1} \dot{\phi}$ in the magnetic circu which in turn causes V_{2}

$V_{2}=\phi / N_{2}$

$\therefore V_{2}=V_{1} N_{1} / N_{2}$
which is the normal transformer vo tage equation．
If V_{1} is a fixed alternating voltage ee a drop of F_{p} i．e．$V=$ and there will equency P has an impedance $Z=1$ $2 \pi f P$ i．e．
i．e．$\dot{\phi}=2 \pi f P F_{\mathrm{p}}$
$V_{1}=N 2 \pi f P F_{p}$
But $\phi=P F$
$\because V_{1}=N 2 \pi f \phi$
 verter such as the ignition coil of a car has been produced. A high ϕ, corres ponding to the high voltage, will flow until the energy
been dissipated.
If an air gap is added in the magneti path it would appear that another com ponent should be added in series in a magnetic circuit is normally shown otal reluctance

$$
\begin{aligned}
& =\frac{l_{1}}{u_{1} a_{1}}+\frac{l_{2}}{u_{2} a_{2}} \\
& \text { i.e } \frac{1}{P_{\text {total }}}=\frac{1}{P_{1}}+\frac{1}{P_{2}}
\end{aligned}
$$

which is two "capacitors" P_{1} and P_{2} in series.
As magnetic materials have a very much larger μ than air it can be seen length of air gap is required to make P and P_{2} equal. For example a gap of around 0.025 mm (1 thou) is required in small commercial ferrite cores.
If we now have two "capacitors" of value P with $\dot{\sigma}$ flowing through them
twice the energy can be stored in them in the same time. In practice a piece of magnetic material can only be worked oo a certain value of F before saturating and hence more The value the same and hencross each P will be twice as large. The current ramp will hus be twice as fast. The two "capaci tors" can be gyrated out into the ele trical
lel.

Antenna aiming calculations

 max is the maximum working flux thata heavy load being a small resistor. This
becomes a large "resistor" in the mag he usually-quoted flue obtained form plied by the cross-sectional area of the rewritten rewritten

$$
V_{1 .}=\frac{2 \pi N f P F_{\text {max }}}{\sqrt{2}}
$$

$$
V_{1}=4.44 \mathrm{Nf} \mu \mathrm{~A} \hat{l} l=4.44 \mathrm{Nf} \mu \mathrm{~A} \hat{H}
$$

\hat{H} being mmf per unit length. This would be the useful form if the basic magnetic information on the material was prevalue of μ was given up to a certain value of H where it starts to fall as saturation begins. This is more in line with standard capacitor practice where stated. means that P can be calculated directly

nd hence so can the open-circu primary current, as $F_{\mathrm{p}}=N I_{1}$.
Consider now the effect of a load on the secondary. eflected back into the magnetic circuit, netic circuit. As ϕ is fixed the "drop" F_{L} must become large and hence $F_{\text {toatal }}$. The current in the primary must the
same way as F
F in the magnetic circuit.

Energy

The amount of energy stored in a core is an important factor in d.c. to d.c. con-
verters and in some forms of filter design. It is also important to understand the effect of air gaps introduced into the core.
When a voltage is connected to the magnetic core. The mmf F developed across P can be determined from

$$
\dot{\phi}^{t}=P F
$$

where t is time, which is a restatement of equation 9 for a fixed $\dot{\phi}$. In other with time. The energy stored is $1 / 2 P F^{2}$ from equation 7. If the primary is suddenly open circuited, the energy is left "capacitance" P An open circuit of the primary converts to a short circuit on the other side of the gyrator. A very large $\dot{\phi}$ will thus flow causing a very large primary voltage. This can be coupled to
some arrangement that only removes some arrangementh voltage, such as a
continued from page 5
The central feature of the approach is partitioning: the material is partitioned into topics that fit within a page-pair with successive pairs grouped togethe into themes as appropriate; each page is the diagram or graph. This feature has been found to be particularly helpfu when the work has to be edited o up-dated. It also allows particular pages courses, e.g. an appropriate section of one course can be simply transferred to another as revision material.
There remain objections to this new format: it is artificial and constrains the nappropriate to some topics; the balance between the types of informaion is wrong. They are not difficult to rebut. The work has to be put into some the more the mind of the author is concentrated. Where a topic cannot be comfortably fitted into a single page pair it can be extended to two or more he structure is fand understanding
not as a rigid set of rules. These can be bent as required, to make more room for analysis at the expense of examples or important to return to the original structure as the starting point for the next section, so that the benefits of a formal and systematic approach are retained.
manally, no matter how enticing ideas may be, they must be shown to be practical. The subject area chosen is that of oscillation in the broadest sense, encompassing ramp sawtooth, and triangular wave generators; astables, RC and LC sinusoidal oscillators; the techniques of frequency and amplitude control. Wherever possible the opportunity has been taken to find unifying concepts, simple equations to cover the and useful applications of the ideas. The merits or otherwise of the new format and of the material presented in it should perhaps be considered consciously and unconsciously the
writing has been shaped by the format but on re-reading this series of articles the format is much more widely applicable. Conversely, the particular viewpoint embodied in these articles could have been expressed in a conventional layout with intle material.
No new format is going to replace the standard text book, nor is this one intended to. What it does is to present the reader with an alternative. In writing has been a considerable stimulus to new ideas and to the re-arrangement of the old. I hope you will find the results as helpful.
helpful. many colleagues who have helped
through discussion and argument to evolve this approach; to those students who have patiently suffered earlier experimental versions of this format; to the editor and staff of Wireless World for their willingness to consider new
ideas and their skill in making them work in print.
them

Method using a pocket programmable calculator

TERRESTRIALLY BASED antennas may be aimed by reference to any of several co-ordinate systems, but the one chosen will have to accommodate local operational constraints. If we forget for the moment those fixed and specialmicrowave relays and large satellite ground stations, which can be established in a relatively leisurely fashion or have the advantage of convenient reference points, the only co-ordinate
system that is of real use is that known as the horizon system, whose two coordinates are azimuth (a) and altitude (h) Azimuth, often colloquially referred to as "compass bearing", is taken here
as the eastward angle from due north, to the target antenna (0° to 360° or 0° to + 180°.). Altitude is the angle between the horizontal and the target (0° to $\pm 90^{\circ}$). See Figs 1 and 2, in which station A is aiming for station B. cribe a set of mathematical formulae with which it is possible to derive a and h, given the latitude (L) and longitude (λ) of stations A and B. The prevalence of excellent scientific calculators now
makes their evaluation straightforward Indeed, the advent of the pocket pro grammable machine has almost rendered this task trivial, and has permitted additional calculations to be made which formerly were best performed
graphically or by means of approximations. An appendix includes a pair of programmes for the Hewlett-Packard HP-25. Owners of the HP-65 and other calculators may also find them useful as inspiration.
on a sphere lies along a "great circle", as shown in Fig. 1. The azimuth of B from A is the angle between their great circle and the one that
the poles. the poles.
void wrestling with the generalised mathematics of solid elliptical geometry, it is usual to regard the Earth asproximation This is a good enough crepancies will usually be swamped by other (e.g., atmospheric) effects. Even so, the derivation of useful formulae for the azimuth is not to be undertaken lightly. There are many versions, all descending by one tortuous route or
another from standard spherical geometry formulae, and the ones given

Fig. 1. Illustrating the azimuth part of azimuth of point B from point A is. the angle a° between their great circle and the great circle that passes through A and the poles.

Fig. 2. Illustrating altitude, h (actually angle h etw
between points A and B.
here therefore should not be regarded as definitive. It may be that the reader's calculator possesses a special function that renders them obsolescent; he is his own.
The usual approach is first to determine the angular distance between A and B, which is shown as angle d° at the to find a while saving it for the evalua tion of
Thus:
$d=\cos ^{-1}\left\{\sin \left(\mathrm{~L}_{\mathrm{A}}\right) \cdot \sin \left(\mathrm{L}_{\mathrm{B}}\right)+\right.$ $\cos \left(\mathrm{L}_{\mathrm{A}}\right) \cdot \cos \left(\mathrm{L}_{\mathrm{B}}\right) \cdot \cos \left(\lambda_{\mathrm{B}}-\lambda_{\mathrm{A}}\right)$

From this, without further ado or pre iminary explanations:
$\alpha=\operatorname{Argument}(\mathrm{X}, \mathrm{Y})$ where
$\mathrm{Y}=\sin \left(\lambda_{B}-\lambda_{A}\right) \cdot \cos \left(\mathrm{L}_{A}\right) \cdot \cos \left(\mathrm{L}_{B}\right)$
$\mathrm{X}=\sin \left(\mathrm{L}_{\mathrm{B}}\right)-\cos (d) \cdot \sin \left(\mathrm{L}_{\mathrm{A}}\right)$
Stop a moment. Many calculator ow have polar/rectangular co save many programming headache such as when X becomes very smal compared with Y . Use the function if it is there; otherwise, take care.
One should also beware of two specia cases that can arise. The commoner
hem is when A is at either of the poles As a general rule it is safer not to attempt the derivation of meaningles figures, so if this condition arises reconsider what the "compass bearing" directly opposite each other on th Earth, one great circle is as good another, and d can only be 180°. Of hese two cases, it is only worth testing or $L_{A}= \pm 90$ (or cos $\left(L_{A}\right)=0$, will mean something.
Having set the azimuth, we still have the altitude to find. This much simple problem masks a whole set of depen dent ones. B may be below cause the sea is in the way, or becaus some mountain happens to be talle than was thought before arrival at th thation site. S^{2} s follows
. 3 summarises the situation. Eac station has its antenna situated at som surface of the Earth, taken as sea leve here. The Earth's radius is R. The
$-h=\tan ^{-1} \frac{Y}{X}$ where
$\mathrm{Y}=\frac{\left(\mathrm{H}_{\mathrm{A}}+\mathrm{R}\right)}{\left(\mathrm{H}_{\mathrm{B}}+R\right)}-\cos (d)$
$\mathrm{X}=\sin (\mathrm{d})$
Again, use should be made of the rectangular-to-polar function if it is available, lest the calculator be con
fronted with the awkward problem of one antenna directly above the other (which can happen).

Next, it may be useful to know if B lies below the horizon. As shown earlier,
"horizon" can mean two things, either of which can be acutely embarrassing to those users who had not intended to rely on atmospheric refraction
plete the signal path for them.

In the case of the sea level horizon:
$-h_{H}=\cos ^{-1}\left[\frac{R}{\left(\mathrm{H}_{\mathrm{A}}+R\right)}\right]$
(Note that the angular surface distance the horizon is also h_{H}.)
In the case of spurious obstructions, we are (or should be) more interested in what clearance (ΔH) exists between them and the line-of-sight signal path.
Since these obstructions are usually close enough to appear on the same medium-scale map as A (and possibly B, too), the input values are conveniently expressed as plane measures: surface distance $\left(D_{S}\right)$ and height $\left(H_{S}\right)$.
$\Delta H=\left[\frac{\left(\mathrm{H}_{\mathrm{A}}+R\right)}{\tan (h) \cdot \sin (\sigma)+\cos (\sigma)}-\left(\mathrm{H}_{\mathrm{S}}+R\right)\right.$
where $\sigma=\frac{180 \cdot \mathrm{D}_{\mathrm{S}}}{\pi R}$
If stations A and B are close enough, it
may be better to use as d in the altitude
formula a value derived from the map
surface distance, $D_{\mathrm{S}}:$
$d=\frac{180 . D_{\mathrm{S}}}{\pi R}$
This reduces the effects of errors
arising from the original measurement
of λ and L , and may obviate the need for
zzimuth calculations if the bearing can e taken from the map too. The course tances naturally tances, naturally.
Appendix A contains two HP- 25 programmes: Azimuth, which generates a
and $d ;$ and Altitude, which covers the calculations relating to h, h_{H}, and ΔH. Appendix B gives some examples of the use of these programmes, and suggests first be obvious.

Appendix A: HP-25 antenna aiming programmes
All angles are in decimal degrees unless otherwise shown (D.MS). "(w)" means
"write as a value"; other symbols have their keyboard meanings.
Azimuth
Accepts: own long. $\left(\lambda_{A}\right)$; own lat. (L_{A}); other
long. $\left(\lambda_{B}\right)$; other lat. $\left(L_{B}\right)-$ all in D.MS. Conputes: azimuth (a); angular separation
Con of stations A and B (d).

USE OF PROGRAMME

\#1 (w) 36

 $\substack{\text { f PRGM } \\=3(w) \lambda_{\mathrm{B}} \\ \text { ENTER }}$
 $\underset{\substack{\text { ENTER } \\(\mathrm{w}) \mathrm{L}_{\mathrm{B}}}}{\mathrm{R} / \mathrm{S}}$

display shows a; y-register and R_{7} contain d. If $\mathrm{L}_{\mathrm{A}}= \pm 9$
teger format.
± 4 For new oother $\$ 5$ For new 'own station', repeat from $\# 2$. Notes: 1. If $L_{A}=90^{\circ}, a$ is returned as 0°. 2. If A and B diametrically opposite each other, an error condition may arisis owing to calculator
imprecision. 3 . Stores R_{5} and R_{s} are unused.

Altitude

Accepts: angular separation of A and $\mathrm{B}(d)$
radius of Earth (R); height of radius of Earth (R); height of own antenn $\left(\mathrm{H}_{\mathrm{A}}\right)$; height of other antenna $\left(\mathrm{H}_{\mathrm{B}}\right)$; obstruc
tion height $\left(\mathrm{H}_{\mathrm{S}}\right)$ and surface distance $\left(\mathrm{D}_{\mathrm{S}}\right)$. Computes: altitude of other antenna $(-h)$ and of the sea level horizon $\left(-h_{\mathrm{H}}\right)$; clearance
between ostruction and signal line-of-sight between obs
path (ΔH).

STEP KEYS		STEP KEYS	
00	(R/S)	25	R/S
01	RCL 4	26	STO 1
02	STO 2	27	R/」
03	+ *	28	
04	STO $\div 2$	29	STO+1
05	STO 0	30	$\stackrel{+}{+}$
06	$\mathrm{x} \leftrightarrow \mathrm{y}$	31	$\mathrm{g} \mathrm{\pi}$
07	RCL 4	32	\div
08	+	33	1
09	\div	34	8
10	RCL 7	35	0
11	fCOS	36	\times
12		37	f COS
13	RCL 7	38	flast
14	f SIN	39	f SIN
15	$\mathrm{g} \rightarrow \mathrm{P}$	40	RCL 3
16	$\mathrm{x} \rightarrow \mathrm{y}$,	41	f TAN
17	STO 3	42	\times
18	RCL 2	43	+
19	$\mathrm{g} \mathrm{COS}^{-1}$	44	RCL 0
20	$x \leftrightarrow y$	45	$\mathrm{x} \leftrightarrow \mathrm{y}$
21	$\mathrm{f} x<\mathrm{y}$	46	
22	GTO 25	47	RCL 1
23	f PAUSE	48	
	GTO 23		GTO 25

USE OF PROGRAMME

${ }^{1}$ (w) radius of Earth
${ }_{\# 2}$ (w) angular sep., d
STO 7
$=3$ fPRGM
$\underset{(\mathrm{w}) \mathrm{H}_{\mathrm{B}}}{\mathrm{f} \text { PRGM }}$

WRELESS WORLD, MARCH 197

displays altitude of other antenna, $-h$. If
this is below the sea level horizon it will
his blink; this may be halted by pressing any
key. In any case, the "horizon value, $-h$ will be in the y-register.
*4 If $-h$ displayed is accepptable, GTO 26 (if not blinking, ignore this GTO operation),
if not, then restart at $\# 3$ with new heights. $=5$ For clearances, continue:
$(\mathrm{w}) \mathrm{D}_{\mathrm{s}}$
ENTER

displays clearance, ΔH, in same units as H and repeat for other obstructions, go to $¥ 5$. $\ddagger 7$ For new station heights, go to $\$ 3$.
$\# 8$ For new d, go to $\# 2$
Notes: 1. $\mathrm{R}, \mathrm{H}_{\mathrm{A}}, \mathrm{H}_{\mathrm{B}}, \mathrm{H}_{\mathrm{s}}$ (and $\Delta \mathrm{H}$) must all be in the same linear units. 2. Altitudes computed are negative if above the horizontal. 3.
Heights are all a.s.l. if positive; negative are Heights are all a.s.l. if positive; negative are
below sea level. 4. Radius of Earth used may be local value. 5 . Stores R_{5} and R_{6} are unused.

Appendix B: Examples
Appendix B: Examples
An ambitious radio amateur plans to establish a station (at $\lambda_{A}=-4^{\circ} 18^{\prime} 30^{\prime \prime}$; $\mathrm{L}_{\mathrm{A}}=50^{\circ} 3^{\prime}{ }^{\prime} 5^{\prime \prime}$ "; and 333.5 m above sea level)
from which he stations as follows: 1. By h.f. to a friend in Melbourne, Australia
$=$ apo
and uh.f. to another friend on u.h.f. to another friend on a nearby hill
$\left(\lambda_{B}=-3^{\circ} 59^{\circ} 08^{\prime \prime} ; L_{B}=50^{\circ} 31^{\prime} 13.7^{\prime \prime} ;\right.$ and $\mathrm{H}_{\mathrm{B}}=12 \mathrm{~m}$ mast +445 m a.s.1.).
3 . By S-band
3. By S-band microwave link to a geostationary satellite over the Atlantic Ocean
$\left(\lambda_{B}=-30^{\circ} ; L_{B}=0^{\circ} ;\right.$ and $H_{B}=3599660.91 \mathrm{~m}$ a.s.l.).

The radius of the Earth he takes as
6367467.5m, this being the arithmetic mean 6367467.5 m , this being the arithmetic mean of the equatorial and polar values. Note that this value.
Procedure
(a) He determines the various bearings andd values using the Azimuth programme. $\mathrm{a}_{1}=71.588^{\circ}$ true $\quad \mathrm{d}_{1}=154.8570868^{\circ}$ $a_{2}=89.200^{\circ}$
$a_{3}=21.936^{\circ}$
$\mathrm{d}_{2}=0.2052409307^{\circ}$
$\mathrm{d}_{2}=$
$\mathrm{d}_{5}=5504195678^{\circ}$
(b) Retaining the d values for those applica(b) Retaining the d values for those applica-
tions in which obstructions could be a hazard
or where he will want an altitude or where he will want an altitude figure, he uses the Altitude programme to determine -h , assuming the extra height provided by
his masts as 5 m (i.e., $\mathrm{H}_{\mathrm{A}}=5+333.5=338.5 \mathrm{~m}$ his ma.s.l.
a.s.
$-\mathrm{h}_{1}=77.429^{\circ}$ blinking. (i.e.: approx 77°

$-\mathrm{h}_{3}=-27.241^{\circ}$.
(c) He estimates that only the u.h.f. link is liable to be obstructed, so he checks the map and sees two possibly troublesome hills. Re-use of Altit
clearances:
deances.
$\mathrm{D}_{\mathrm{Sl}}=3442 \mathrm{~m} \mathrm{H}_{\mathrm{Sl}}=250 \mathrm{~m} \quad \Delta \mathrm{H}_{1}=101.15 \mathrm{~m}$ $18741 \mathrm{~m} \mathrm{H} \mathrm{S} 2=381 \mathrm{~m} \quad \mathrm{H}_{2}=48.88 \mathrm{~m}$ Theoretically, therefore, he has a clear view
of Station 2, and knows this before reaching the site. Unhappily, no amount of programming will ensure that the owners will allow-
him to camp there (at Kit Hill Cornwall, west of Dartmoor).

LITERATURE RECEIVED
9

Advantages of automatic testing equipment are set out in a booklet from Teradyne, who feel that fables and cartoons are a help in
disseminating their message. Teradyne Ltd, Clive House, 12 Queens Road, Weybridge,
Surrey Surrey
Replacement guide for semiconductors of all types, using Philips devices, is now available. Salient performance data is provided for
transistors, thyristors and triacs but replacements only for other devices. Mullard Ltd, Mullard House, Torrington Place, Lon don W.C.I.

To provide a basic insight into the preparation and production of printed circuits, Isola which the Isola material is described and manufacturing methods illustrated. Information is offered on recommended ways of
preparing artwork. Isola Werke A.G., D-5160 preparing artwork. Isola werke A....,
Duren, Postfach 236, West Germany
Analytical instruments for chemists is briefly Packard. Instruments listed include gas chromatographs and accessories, liquid chromatographs, mass spectrometer systems and ancilary equipment. Hewlett-Packard,
Winnersh, Wokingham, Berks RG11 5AR

WW 403
Assistance with the design of radar circuitry is Assistance with Plessey's Radar Applications Handbook. Design details, with p.c. layouts, are given for preamplifiers, a $120 \mathrm{MHz} \log$.
strip and swent-gain if strip strip and swept-gain i.f. sue-to-digital converters are also covered. Copies can be had from Plessey Disrributors.
$120 \mathrm{~W}, 300 \mathrm{~W}$ and 600 W amplifiers are the subject of a leaflet from Derritron. The units are intended as drivers for vibrators or p.a. 20 kHz , at rated output. Derritron Electronics Ltd, Sedlescombe Road North, Hastings, East

Electronic timer Series E is described by Tempatron in a new leaflet. This is a c.m.o.s. Timing ranges between 0-100ss and 0 . 30 h are available. Tempatron Ltd, 6 Portman
Road, Reading, Berks WW 405 .

Components catalogue from Rank lists a variety of general electronic parts and spares
for Rank Radio equipment. There is also section on servicing instruments, tools and materials. Rank Radio International Ltd, RSVP Service, Walton Road, Ware, Herts
SG12 0DY: WW406

Development, design and use of KEF Calinda and Cantata loudspeakers is subject of Ke covering background and performance details of speakers. Accompanying note points out that lower carve in Fig. 8 (b) should be reactance, not resistance. KEF Electronics
Ltd, Tovil, Maidstone, ME15 6 6OP. \quad WW407

Linear circuit applications is a 20 page book t containing over 40 applications of RC ic.s. Obtainable from Distronic LLd
50 -51 Burnt Mill, Elizabeth Way, Harlow, Essex …................... ww 408

Phase Angle Voltmeters is title of note from cribing theory of these instruments. It de scribing theory of these instruments. It can
be obtained from Bill Cullum, Applications Engineer, North Atlantic Industries Inc., 60
Plant Avenue, Hauppage, N.Y. 11787, USA

Magnetic Perception Heads: Principles an Practice, describes heads used for detection of moving objects. Application note is pro
duced by Orbit Controls Ltd, Lansdown ndustrial Estate, Gloucester Road, Chelten ham, Glos GL51 8PL WW 410

Dry reed relays fully described in 32 pag catalogue from Associated Automation specific data on devices made by AA. Cata logue is available from 70 Dudden Hill Lane,
London NW10 1DJ WW 411

GaAs power oscillators, described in Appl Semiconductor Corporation. Devices used cover frequency range $3-18 \mathrm{GHz}$. Useful list of references. Can be had from Pascall Elec-
tronics Ltd, Hawke House, Greenr Street, Sunbury-on-Thames, Middx TW16 6RA Voltage regulators for microprocessors listed
and characterized in 15 page booklet from Lambda Electronics Co., Abbey Barn Road ubject of 40 page guide published b.m.o.s. Devices. Section on theory is followed by 25 applications, including gain adjustment,
panners, function generator, phase shifter panners, function generator, phase shifter
and power series generator. Analog Devices, Central Avenue, East Molesey, Surrey ${ }_{\text {WW }} 414$

Optoelectronic devices from Monsanto de scribed in new short-form catalogue, avail-
able from Swift Hardman, P.O. Box 23 , Baillie able from Swift Hardman, P.O. Box 23 , Bailli

Portable Data terminal and v.d.u., Tele-ZIP and computer, using television set as v.d.u. and ZIP-64 low-cost v.d.u. both described in leaflets from Data Dynamics, Data House

High-voltage and r.f. connectors from sunner described in two catalogues, avail oad, Bicester, Oxfordshire OX6 OLA

NEW PRODUCTS

Professional readers are invited to enter codes on the reply-paid card bound in at pages 112/3

Measuring systems A range of modules (amplifiers signal conditioners, etc.) enable a
complete industrial measurin complete industrial measurin
system to be assembled to insystem to be assembled to
dividual requirements. A typica system for a weighing applica-
tion is shown in the photograph tion is shown in the photograp
and is built up using a powe supply, amplifier, peak value store, auto-tare and limit switch
all contained in a cast meta all contained in a cast meta
housing which is secure against dirt and the direct jet from a hose
Referenc--signal Reference-signal generators are
included, providing 225 Hz , 5 kHz or direct-voltage outputs. The equipment is made by Hottinger
Baldwin Messtechnik and is marketed here by Carl Schenck
(UK) Ltd, Stonefield Way Ruis lip, Middx HA4 OJT.

Digital multimeters

Two new meters by Sinclair, the
DM350 and DM450, are $31 / 2$ and $41 / 2$ digit instruments respec tively, offering a similar set of
ranges and facilities, the DM45 at greater accuracy and resolu tion. Basic accuracy is $0.1 \% \pm$
digit and $0.05 \% \pm 1$ digit and eac digit and $0.05 \% \pm 1$ digit and eac
type will measure from $100 \mu \mathrm{~V}$ d. and a.c., InA d.c., $1 \mu \mathrm{~A}$ a.c. an from $100 \mathrm{~m} \Omega$ to $20 \mathrm{M} \Omega$. Each has a diode test facility. The instru-
ments are in very slim plastic cases with tilt stands, similar in form to that of the older DM 235 ,
and can be provided with a carand can be provided with a cal
rying case and neck strap for hands-off use. Four C cells provide the power, or an a.c. adaptor
can be used. Rechargeable batteries and a high-voltage probe are accessories. Sinclair Radionics, London Road, St. Ives,
Huntingdon, Cambs PE17 4HJ. Hunting
ww302

Temperature probe

Effectively a temperature-to voltage transducer, the Model e-28 from B and K recision -50° to $+150^{\circ}$ Celsius to be measured by means of an ordinary
analogue or digital voltmeter Liquids, gases or solids can be examined and in the case of a liquid the short settling time after a 100° change of 10 s is achieved.
A suggested way of using the A suggested way of using the
probe is to examine small elec-

ww301

ww302
tronic
heating.
The
meter used with meter used with the over $10 \mathrm{k} \Omega$ on the $0-3 \mathrm{~V}$ range.
Maximum Maximum error of the combina
tion is quoted as $\pm 1.7^{\circ} \mathrm{C}+{ }^{\circ}$ tion is quoted as $\pm 1.7^{\circ} \mathrm{C} \pm$ the
error of the meter. Power to the probe unit is 9 V , a small radio
battery lasting around 120 hairs battery lasting around 120 hours
of continuous use, and the end of continuous use, and the end of
battery life is indicated. B and K
E Precision, 6460 W . Cartland Street,

U.S.A. | U.S.A. |
| :--- |
| WW303 |

Power resistors The Erg range of miniature, wirewound power resistors, with
new closer tolerance, are said to fill the gap left by metal oxide power resistors in the lower values of resistance. The range is
from 30 milliohms up to $18 \mathrm{k} \Omega$ in the higher voltage applications, at an initial tolerance of 1% to 5%

- any value - any value in the range. In
stability is claimed to be reduced by the use of crimped leadouts, and temperature variations are
normally specified as normally. specified as +6
p.p.m. $/ /^{\circ} \mathrm{C}$. Alternative specifica-
t. tions for specialized work are
available. Erg Components, Luavailable. Erg Components, Lu-
ton Road, Dunstable, Beds LU5 4LJ.

Television sound i.c. The TDA2190 integrated circuit contains an i.f. limiter ampinifier
with output low pass filter, f.m.
detector, d.c. volume control,
audio input/output point for controls and v.c.... audio pre
amplifier and power amplifier ampifier and power amplifie-
The power amplifier can operat in either a class B or a constan
current consumption mode. Th power output at $V_{s}=24 \mathrm{~V}$ is up t 4.5 W into $16 \mathrm{ohm}^{\mathrm{s}}$ (class B) or 3.
W into 16 ohms (c.c.c. mode). The W into 16 ohms (c.c.c. mode). Th
idevice is mounted in a power d.i. package incorporating a coppe
slug for up to 15 W power dis sipation. SGS-ATES (UK) Ltd
Planar House, Walton Street Planar House,
Aylesbury, Bucks.
Ww305

ww305

 Remote coA range of 1.0 kW trequency syn
thesized thesized h.f. solid-state transmit
ters, designated the T1005 series offers full remote control ove
any distance. Up to 10 transmit any distance. Up to 10 transmit
ters can be controlled from single unit. The makers say a
country's complete h.f. transmit country's complete h.f. transmit
ting network could be controlled
from ting network could be controway
from one point in this way
Frequency, type of service and Frequency, type of service and
other operational facilities, in other operational facilities, in
cluding optional antenna sele-
tion, are all under the control of tion, are all under the contron
the remote operator. Frequency
and service information and service information can be
stored on up to 15 channels for recall purposes. Commands are made on a 20 -button keyboard and a digital readout is provided
of transmitter, channel and of transmitter, channel and
frequency selected. The series of transmitters covers a frequency
range of 1 to 29.9999 MHz , with range of 1 to 29.9999 MHz , wit
290,000 channels in 100 Hz steps. Transmission modes are s.s.b. c.w., m.c.w., d.s.b. and optional
i.s.b. A control system gives pro i.s.b. A control system gives pro
tection from mismatch of an an tenna circuit ranging from short circuit to open-circuit output
Redifon Telecommunication Redifon erecommunication Ltd Broomhill Road,
London SW18 4JO

WW306

Buzzers

Small buzzers, for use in portable battery-operated equipment, are
now available in a new rang now available in a new range,
Type GAloo K , from Highland The 400Hz tone is produced elec
tronically, at between 70 an

ww307

WW308

Taut-ba

meters
Sifam's new volume level meter has a performance "virtually in-
distinguishable from that of a true VU meter under most con-
ditions" according to their marditions" according to their mar-
keting director. The new meters meet the requirements of the American Standard C16.5 1954,
the company say, except the the company say, except the
clause relating to dynamics. They are more heavily damped and
have a rise time of about 0.1 have a rise time of about 0.1
second greater than traditional VU meters. They quote time from 0 to $-3 V \mathrm{VU}$ as 0.21 to 0.26 seconds, which compares with
0.13 to 0.15 for their conventional meters. Makers say the price is less than $£ 5$. Sifam Ltd, Wooww310 recorder
Sounding more like a new British
Standard Standard, BS 8000 is a
is
microprocessor-based xy plotter microprocessor-based xy
than clotter
can
digitize,
record and process up to eight
channels of analogue informchannels of analogue inform-
ation. Either raw or processed
data are plotted in real time ation. Ererer raw or processed
data are ploted in real time
or stored on a flexible disc, equivalent to about 100 metres of
chart paper. You can record on char- paper. You can ron event
pre-set triggering or on
triggering modes at up to 20,000 triggering modes at up to 20,000
points per second, or at regular
intervals with as few as intervals with as few as 86 points
per day. Information can be pro-

cessed before plotting, of course in a variety of ways that includes
averaging, smoothing, differen-
tiation tiation, integration.
Last year the sa Last year the same company
introduced the first chart recorder with built-in memory enabling the Transcribe 10 to errorm as a transient recorder.
Bryans Southern Instruments Ltd, Willow Lane, Mitcham, Sur$\underset{\text { WW311 }}{\substack{\text { rey CR4 } \\ \text { WWL. }}}$

Large-numeral

multimeter

We first saw the Metrix digital multimeter at the recent opening Laboratories new showroom. It is will give 1000 hours operation. And the number of hours service
left in the battery can be displayed once the expected life
drops below 200 hours. What's drops below 200 hours. What's
more, manganese alkaline
batteries three years "autonomy" at eight
hours a day. This long battery life
for a digital multimeter, and its
18mm numerals single 18 mm numerals, single,-function
switch and price of E 109 make it switch and price of $£ 109$ make it
unique among such meters. The c.m.o.s. microprocessor and liquid crystal display consume
$250 \mu \mathrm{~A}$. Accuracy on most range is 2500 A . Accuracy on most range is
$\pm 1 \%$ reading $\pm 0.25 \%$ f.s.d. (bet\pm ter on direct voltage) and best Many other performance details of the instrument, made by
Metrix of Metrix of Chemin de la Croix Rouge, Annecy are available
from their U.K. agents Precision Instrument Laboratories Ltd, 727. Ild Kent Road, London SE15. ww312

Power regulator

The Domino power regulator has a group of parallel slave units.
controlled by a voltage or current master amplifier. By connecting an appropriate number of 20 A . slaves in parallel, any required
current can be regulated. The units are encapsulated circuits enclosed in a metal case, which
has an electrically isolated flat has an electrically isolated flat
aluminium surface for mounting aluminium surface for mounting
on convection or force-cooled heat sinks. Each slave can dis-
sipate up to 250 W at 20 A , and the Sipate up to 250 W at 20 A , and the
voltage master provides ootages
between 0 and 55 V . The constant current system can provide accured to be better than 0.01%. A
claimed claimed tancy system enables full
redund output to be maintained if one of
the slaves becomes faulty the slaves becomes faulty.
Roband Electronics Ltd, Charlwood Works, Charlwood, Surrey RH6 OBU.
WW313

Router for p.c.bs

A router has been designed
specifically for development spetictacaly for development of removable guide pin, adjustable fence and end/depth stop, fitted
as standard, allow a variety of as standard, allow a variety of
work to be done. Profiles can be cut from a master using the guide pin; cut-outs for edge connector ponents can be made using the fence and end stop, and un-
wanted tracks removed using the wanted tracks removed using the
cutter heights adjustment. Also, cutter heights adjustmemfered to
boards can also be chamfer remove rough edges. Construc-
tion is of steel and aluminium and the key type chuck has a 4 mm maximum capacity. The work
area is lit by a lamp and the 100 -watt motor drives the cutter at 16000 to 18000 r.p.m. A A vacuum
cleaner adaptor is available for removing sparf. Price is $£ 245$ plus
v.a.t. Circuitape Ltd, 33 New Street,
WW314

Silicone geraniums

In the interval between the fall of the despotic valve and the beginning o integration, the majority of semicon-
ductor devices were carved out of germanium. It wasn't a name commonly used by non-technical people and, as often as not when they did come acros it, it came out as geranium. It even crep occasions, but we kept quiet about it and everyone was too kind to refer to the mistake. The BBC, of course maintained such a high standard tha they ${ }^{\text {n }}$
gaffe. $\underset{\text { It }}{\text { gaff }}$
It's all changed now, though. We do seem to have geranium now, but we with silicone. I recently had trouble from F. L. Devereux who, as most readers will know, was Editor of W.W. for many years. He writes a very enteraining letter, does Dev., and although he appears cheerful on the surface, one under the surface. His bête noir is the widespread use of the word licone, when silicon is meant, as in silicon chip. And the surprising thing is that the BBC are as much to blame as nyone, this time. He has this fantasy, of a kind of elastomer and moulded into the form required by the designer. It's a bit sad about the Beeb, I feel The Pronunciation Unit used to be con cerned mainly with words like Brno, kept fairly busy explaining how to speak plain English. Since the gabblers, mutterers and mid-Atlantic snarler ook over, one can't depend on broad sters for a lead any more. It's a tarted to slop around like a bunch of old lags in the exercise yard.

Production wine

It's been a good year for apples. We have two trees, both a bit peculiar but laden down to the ground with the cross One is a crab-a l've ever come nough, I suppose, although a fai limited in application, and the other produces gigantic red apples. Not jus red skins, you understand, but red all the way through. The first year we moved into the house, I kept waiting for they never did.
Well, anyway, in our family, we draw the line at red apple pie and after a while we got fed up with apple jelly, so I thought I'd get into wine making. Two
years ago, I made a tentative gallon of wine in a most unscientific way and it was beautiful. It went through the malo-lactic fermentation (pure luck
 and I would dearly like to know how it finishes. Also, what effect a fault in programming would have. The first case of matricide committed on advice the 'man bites dog' class of news item and could conceivably cause a good deal of head scratching in the lega profession. The program is actually very computer is going to help in circum stances of that kind is almost certainly in need of a psychiatrist.
nothing to do with intent) and it tasted like nectar. So, this last October, I went gently mad and made seven gallons,
only this time I got hold of all the technical-looking glassware and yeast nd tablets and stuff and did the jo only just now clearing, but I've bee having a furtive taste every now and then and the effect is grotesque. It feels inside of your head. inside of your head.
s into practically everything now, there has to be a way of testing the bre before it goes beyond recall. You can either poisonous or liquid gold, and there is definitely a need for some kind of gizmo or dip into it, with a meter scaled from, say, Uk' to 'Wow', or 'sink' to 'cellar'. Warned in time, my seven upgraded from Uk to So-So, but now there are going to be lots of very drunk sewer-rats stumbling around. Maybe a pH meter would help, if I knew what to look for, but inaven't come across, take remedial action. It could be I'v identified a hole in the market here.

Freudian chip

1 always seem to be going on about computers. It isn't that I have anythin gainst them - not much, anyway when someone suggests that computer could take over from the Almighty in heir spare time and spend the rest of he week playing each other at three munication from a firm of program see? I haven't forgotten!) suppliers for home computer, the spectacular sug gestion is made that if one is experien eing a pain in the brain, all one has to do which promptly turns into a psychia rist. Honestly! Cross my heart, that's what it says. The sample of operator

Sight and sound

 A letter from John Corner, of Whiteley Electrical Radio, informs me that the was not, when system at London Bridge October issue new. It was the the equipment I heard the new one still being in their factory. So much for British Rail's accuracy in replying to a request for information. I've heard the new system now, and the concoursecoverage is much improved, but there coverage is much improved, but there
does seem to be a certain amount of trouble in the station itself. I'm now convinced that the problem lies more in the way it is used than in the system some announcy no informe ciar an to me, at any rate. The ones I can make out are spoken slowly, with expression; the others are read in a flat monotone, at a speed which allows the main echo to coincide with the
dering both useless The recommended by experienced commuters is to hang about unconcernedly in the concourse until the train one wants is signalled on
the big new visual-display board and then to race like a stag to get to the train before all the fierce ladies with their enormous bags beat you to it. The p.a. is of great help here, because as soon as you see the destination come up, you
can start running and listen for the can start running and listen for the
platform number on the wing, so to speak. I've gained nearly five seconds, several times, in this way. If you stop to pick up the people you've knocked losing the advantage
I still think v.d.us on the platforms would be a good idea, since those whose business it is to make life difficult sometimes change the destination of a train when everyone is comfortably
settled with the crossword, and if you can't hear the platform p.a. you are left wandering about asking complete strangers what in the world is happening. I am usually reduced to chasing finish up in Eastbourne one of these days. Not that I have anything against Eastbourne, but I happen to live near Croydon.

An Exceptional Measuring Instrument from Bang\&Olufsen

B\&O Voltmeter RV11 is the result of 11 years research.
B\&O has been working on the construction and development of test instruments since 1959. The expertise gained during these two decades has esulted in a range of measuring instruments with a particular relevance to design/development and service fields
B\&O Voltmeter RV11 is a multimeter for the pushbutton function and range selectors are quick and easy to use and are positioned to form an instant read-out of settings during use.

Ranges:

Volts
Resistance $\begin{array}{ll}\text { Frequency range } & 0.2 \Omega-50 \mathrm{M} \Omega \\ 10 \mathrm{~Hz}-1 \mathrm{MHz}\end{array}$ Input impedence $10 \mathrm{MQDC} / 1 \mathrm{MOAC}$ Options:
Probes are available at extra cost allowing direct measurement of temperature, frequency, high measurement of temperature, freque
voltage DC and R.F. signal voltage.
Send in reply card for our brochure giving detailed information about RV11 and other instruments in the B\&O range.

Bang\&Olufsen
 Asolid investment

NRDC-AMBISONIC UHJ

\therefore -

SURROUND SOUND DECODER

The first ever kit specialy produced by integrex for this British NRDC backed surround sound system which is the result of 7 years' research Ty the Ambisonic team. W. W. July. Aug. 'HJ.
The unit is designed to decode not only UHJ Sut virty all other 'quadrophonic' systems (Not CD4), including the new BBC HJ 10 input
selections The decoder is linear throughout and does not rely on listener fatiguing logic enhancement techniques. Both 2 or 3 input signals and 4 or 6
The

Complete kit, including licence fee $£ 49.50$ + VAT
or ready built and tested $£ 67.50$ + VAT

NEW S5050A STEREO AMP

50 watts rms-channel. 0.015% THD. $\mathrm{S} / \mathrm{N} 90 \mathrm{~dB}$, Mags $/ \mathrm{n} 80 \mathrm{~dB}$
Tone cancel switch. 2 tape monitor switches.
Complete kit only $\mathbf{£ 6 3 . 9 0} \mathbf{+}$ VAT.

Wireless World Dolby ${ }^{\text {® }}$ noise reducer
 Trademark of Dolby Laboratories Inc.

Featuring:

- switching for both encoding (low-level. h.f. compression) and decoding
-a switchable f.m. stereo multitlex and bias filter.
provision for decocing Doiby f.m. radio transmissions
no equipment needed for alignment.
suitability for both
- suitability for both open-reee and d assette tape machines.
- check tape switch for encoded monitoring in three-head machines.

Also available ready built and tested
Typical performance
Noise reduction better than 9dB weight
 Harmonic cistortion 0.1\%, at Dolby level typically
0.05% over
0.12% Signal-to-noise ratio 75 FB (20Hz to 20 KHz , signal
at Doliby levell) at Monitor output Dynamic Range $>90 \mathrm{db}$
Oynamic Range $>$
30 mV sensitivity
Complete Kit PRICE: $£ 43.90$ + VAT Calibration tapes are available for open-reel use and for cassette (specify which)

Price $£ 59.40$ + VAT Price $£ 2.40$ VAT
Single channel plug-in Dolby $(\mathbb{1 4})$ PROCESSOR BOARDS $(92 \times 87 \mathrm{~mm})$ with gold plated contacts are availabie with
Price $£ 9.00+$ VAT all components

Price $£ 9.00$ +VAT
Single channel board with selected fet
Gold Plated edge connector
Selected FETs 65p
Please add VAT @ $12 \frac{1}{2} \%$ unless marked thus*, when 8% applies (or current rates)
We guarantee fuil atter-sales technicai and servicing faciutios on all our kits, have you checked that these services are available from other suppliers?

S-2020TA STEREO TUNER / AMPLIFIER KIT

SOLID MAHOGANY CABINET
A high-quality push-button
FM Varicap Stereo Tuner combined Amplifier.

Brief Spec. Amplifier Low field. Toroidal transformer, Mag, input, Tape In/Out facility (for noise reduction unit, tc.), THD less than 0.1% at $20 W$ into 8 ohms. Power on/off FET transient protection. All sockets, fuses, etc., are PC INTERSTATION MUTE, and phase-locked IC stereo decoder. LED tuning and stereo indicators. Tuning range $88-104 \mathrm{MHz}$. 30dB mono S/N @ i. $2 \mu \mathrm{~V}$. THD 0.3\%. Pre-decoder 'birdy' filter. PRICE: £59.95 + VAT Nelson-Jones Mk. 2 Stereo FM Tuner Kit. Price: $£ 69.95$ + VAT

NELSON-JONES MK. I STEREO FM TUNER KIT

A very high performance tuner
with dual gate MOSFET RF and
Mixer front end, triple gang with dual gate Mromt end, triple gang varicap tuning, and dual ceramic filter/dual IC IF amp.

Brief Spec. Tuning range $88-104 \mathrm{MHz}$. 20 dB mono
quieting $@ 0.75 \mu \mathrm{~V}$. Image rejection -70 dB . IF rejection quieting @ $0.75 \mu \mathrm{~V}$. Image reje IC stabilized PSU and LED tuning indicators. Push but tuning and AFC unit. Choice of either mono or stereo with a choice of stereo decoders.
Compare this spec. with tuners costing twice, the price.
With ICPL Decoder $£ 40.67$ + VAT With Portus-Haywood Decoder $£ 44.20$ + VAT

Sens. 30dB S/N mono @ $1.2 \mu \mathrm{~V}$ THD typically 0.3%
Tuning ránge $88-104 \mathrm{MHz}$
LED sig. strength and stereo indicator
STEREO MODULE TUNER KIT
A low-cost Stereo Tuner based on the 3302 FET RF module requiring no alignment. The IF comprises a ceramic
ilter and high-performance IC Variable INTERSTATION MUTE. PLL stereo decoder IC. Pre-decoder 'birdy' filter Push-button tuning

PRICE: Stereo £33.95 + VAT

S-2020A AMPLIFIER KIT

Developed in our laboratories from the highly successful "TEXAN" design. PC mounting potentiometers, witches, sockets and fuses are used for ease of assembly and to minimize wiring Power 'on/off' FET transient protection.

Typ Spec. $24+24 \mathrm{~W}$ rms. into 8 -ohm load at less than 0.1% THD. Mag. PU input S/N 60 dB . Radio input S / N roidal mains transforme PRICE: $£ 35.95$ + VAT

BASIC NELSON-JONES TUNER KIT $£ 15.70$ + VAT BASIC MODULE TUNER KIT (stereo) $£ 18.50$ + VAT

PUSH-BUTTON UNIT

98

WIRELESS WORLD. MARCH 1979

The West Hyde MOD-1 Range Swiss craftsmanship comes
to instrument cases! to instrument cases! Here are three new series of
enclosures from Switzerland - elegant, strongly con structed and versatile enough Tor hundreds of applications. The range includes dozens of card guides, extrusions and
rails which make for quick and simple mounting of all types of components. The details

Send for our catalogue and price list!
All West Hyde cases are available with substantial discounts for quantities. The Mod-1 Range have price breaks at $5,10,25,50$ and 100 off. (20\% discount at
100 off). Prices include post and packing and are correct at press date. 10% discount is given on first two price breaks if cases are collected. WEST HYDE DEVELOPMENTS LIMITED, Unit 9 , Park Street Industrial Estate, AYLESBBURY, BUCKS. HP20 1ET. Phone: Aylesbury (0296) 20441. Telex: 83570

Z \& I AERO SERVICES LTD ${ }^{2}$ 5s
Head Office: 44a WESTBOURNE GROVE, LONDON W2 5SF
RETALL SHOP
5 TOTTENHAM COURT
85 TOTTENHAM COURT ROAD, W. 1
SPECIAL OFFER OF BRAND NEW USSR MADE MULTIMETERS

Latest transistorsed Telephone Ampirifer	Made ion Migh Satiy
conversation without holdinith	Ready for use. Crystal
Seit Many peopie conilsten tep wime	
	int
No	
Ne contol. Model with tipereerering	returned in 10 days. Six months' se guarantee. P. \& P. 99p
price e eftund guarantee.	
WEST LONDON DIRE 169 Kensington High	CT SUPPLIES (W/W) Street, London W. 8

Efrallicient design and manu-
facture ensures that all our
transformers have a low heat-rise
at full load, making a more reliable
arid safer product. Safety is aiso
the reason behind our clip-on
terminal insulators, which can
make our transformers 'touch-
proof' in use.
Lascar Components
Billericay (02774) 3394
P.O. Box 12 Second Avenue Billericay Essex
ww - 32 FOP FUPTHER details

It has long been established that for a particular application there is an optimum microprocessor, but the purchase of a new Microprocessor Development System for each application is prohibitively expensive. With the Quarndon Microcomputer System only the cpu board has to be changed. Each high-performance microcomputer board, using an 8080A Z80, 2650, or 8085 A as cpu can be used with an extensive common range of memory and interface boards, including our new high-performance fixed/floating point Arithmetic Processing Board.
The Quarndon QMS System provides true economy, allowing a change of cpu with a minimum of expenditure on new hardware.
QUARNDON ELECTRONICS LTD

SLACK LANT-DH:BEY DIES 8MD

Telephone: DRRBY 32651 Teles: 37163 (Quarnuron Derby)
BW 32651 Tclan: 3763

RCONI TEST EQUIPMEN 91D Deviation meter 55 E Wave analyser. New, $£ 1 \mathbf{1 3 5}$ 101 RC oscillators. $£ 65$	P. F. RALFE ELECTRONICS	
		$\begin{aligned} & \text { PYE-LING V V } \\ & \text { oil. Overall dim } \\ & \mathrm{h} £ 5.25(25 \mathrm{p} \end{aligned}$
Pointat inv		Cen
POWER SUPPLIE		
dilems +1.1 arit	 	TEEEVIION Movirois
Man Munis Couvter		

...and No. n!

This third book in Wireless World's popular series will be welcomed by all concerned with designing, using and understanding electrenic circuits. It comprises information previously ncluded in the third ten sets of Wireless World's highly successful Circards - regularly published cards iving selected and tested circuits, descriptions of circuit operation, component values and ranges, circuit limitations, modifications, performance data and graphs. The book follows on from Circuit Designs Nos. 1 and 2. It is magazine designs Nos. 1 and 2. It is magazine sets of Circards plus additional information and an explanatory ntroduction. Like its predecessors it may soon be difficult to obtain, so you are advised to order your copy without delay.

Voltage to frequency converters Amplitude modulators
Reference Circuits.
Voltage regulators.
RC oscillators-part 1.
RC oscillators - part 2.
C.M.O.S. - part 1.
C.M.O.S. - part 1.

Analogue multipliers.
R.m.s./log./power law circuits.

circuit designs
 Collected Circards

PWilliams/JCarruthers/JHEvans/JKinsler

A WIRELESS WORLD PUBLCATION

thook fram wireless world

General Sales Department, IPC Busincess Press Lrd R(x)m CP 34 . Dorset House. Stanford Street, London SEI 9LU

ORDER FORM

To: General Sales Department.
IPC Business Press Limited, Room CP 34, Dorset House, Stamford Street, London SEI
Please send me.......copy sof
Circuit Designs - Number 3 at $\{14.50$ each (cheques payable to IPC Business Press Ltd.) AMIE.
pleax. rint
ADORESS.

201+ 200 Watt AMPIFIER
400W rms continuous - - 800W peak! 0.03 \% THD at FULL power!

PLUS all the following features too!

* Professional quality components, sturdy 19 rack mounting chassis complete with sieeve and tee

* Value tor money - quabily and pertormancence comparabule with ready-buitr amplifiers costing ove

Cabinet size 17.2" $6.7^{\prime \prime}$
COMPLETE KIT ONLY £196.90 + VAT

TRANSCENDENT 2000

READ THE REVIEW IN SOUND INTERNATIONAL DEC 78! SINGLE BOARD SYNTHESIZER

COMPLETE KIT ONLY
$£ 172.00$ + VAT!

COMPLETE KIT ONLY
$£ 49.50+$ VAT

MPA200 100W MIXER/ AMPLIFIER
COMPLETE KIT
£49.90

+ VAT

Wirioss Wortd Dosigns: Full kits are not avialable to

 REEPRNTN of the e articices describing this design 45p No VAT
REPRINT of postscript article 30 N No VAT

Special Hart Copyright test tape makes.
tape speasy to seet up vU level. head azimuth and tape sped, without test inst
with instructions $£ 2.50$ inc

SCOOP PURCHASE Evierybody thought hhey had all gone
But we fund them! Brand New Garrard
CT4 casent

PLASTIC ESCUTCHEON
Suitable for CRV and CT4 mechanisms. As used on our cecorder, comple
with mounting screws $£ 1.99$ plus VAT. CASSETTE HEADS
eads tor domesticic, industrial and audio visual purposes is
best stereeo head that we can find is our $H S 515$ Sendus Aloy Super Head. This has an even better high frequency response than our HS14 performance is combined with a aigh output, thus maintaining the best possibibe

LENCO CASSETTE MECHANISMS

$$
\begin{aligned}
& \text { We hold stock sot a argne of Lenco tape transports tor all uses, we can also supply } \\
& \text { spare parts For example }
\end{aligned}
$$

CASSETTES

Our laboratory tests on recorders made us realise how important the choice of
cassente is. Wow and fluter is obviously aftected by the quality of the housing but the

$\left.\begin{array}{l}\text { C90 80p } \\ \text { C60 60p }\end{array}\right\}$ Complete with library case and index card
C10 35p Complete in library case. Suitable for Micro Programming.
ALL UK ORDERS ARE POST FREE
Please send 9×4 SAE for lists giving fuller details and
HART ELECTRONICS
Penylan Mill, Oswestry, Salop
Personal callers are always welcome
but please note we are closed all day Saturday

R RADFORD
 AUDIO MEASURING INSTRUMENTS

Oscillators
LDO3. Low Distortion Oscillator $£ 300.00$

Distortion Measuring Sets

DMS3. Distortion Measuring Set, manual nulling£250.00

Voltmeters
HSV1. Audio Microvoltmeter, average responding
HSV2. Audio Microvoltmeter, true r.m.s. reading£225.00
Noisemeters (psophometers)
ANM1. Audio Noisemeter and Microvoltmeter,
average eresonding a . .
ANM2. Audio Noisemeter and Microvoltmeter.
ANM3. Audio Noisemeter and Microvoltmeter
ANM3. Audio Noisemeter and Microvoltm
true r.m. .s. and quasi-peak responding
£300.00

Descriptive leaflets available on reques.
RADFORD LABORATORY INSTRUMENTS LTD. 4 High Street, Nailsea, Bristol BS19 1BW el. 02755-6637

WIRELESS WORLD, MARCH 1979

Ham Bands with $1,5-30 \mathrm{MHz}$ receive with built-in 150 MHz requency counter plus option of $0-1$
Iransceiving application $1.8-30 \mathrm{MHz}$

RADIO SHACK LTD

For Communi
Trio testgear.

 DRAKE +SALS + SEPVICE
RADIO SHACK LTD
188 BROADHURST'GARDENS, LONDON NW6 3A

Cables: Radio Shack, London, NW6. Telex: 23718

 uiality work that made the instrument in the first place-
backed by
a full vear's waranty

Now...
the next generation of bench DMMs!
Two New Keithley Models offer uncompromising performance and outstanding value

- A"ccuiracy $31 /{ }^{\prime}$'s can "t mätch $0.04 \%+1$ digit on dc
volts and
- Large, bright 20,000 -count LED display that's quick - Convenient bench size that won't get "lost" yet
doesn't crowd
Exceptional reliability.

KEITHLEY
The measurement engineers
ww-029 FOR FURTHER DETAILS

Pantroducing
Acorn

8 digiti) 7 segment display

 CUTS standard Crystalcontrolled tape interfac circuity
Keyboard Instructions Keyboard Instruct
M Memory Inspect
Change Memory Inspect/
Change (remember
last address used) Last address used)
Stepping up through memory
Stepoing down through memory Sepping op twrough trough mem
Seto
Setclear break opint
Restore from break
Load from tape LSod from tape

A professional MPU card

Designed as a general purpose industrial controller based on the 6502 MPU, this card is complemented by a matching Eurocard hex keyboard and CUTS standard cassette interface, to create

the new.
 Acorn Microcomputer

Compact, easy to use Acorn Monitor include the following features:
System program Set of sub-routines for use in
programming
Powerful de-bugging facility
diwsplays all internaing ragecility
Tape los
Tad and store routines
Acorn - with real
expandability!
The standard Acorn is fully
expandable to 65 K o f memory,
and the Acorn bus is available on the 64 -way edge-connector. Whether you're a beginner in the
field, an ambitious home computer
butf a buff, a developmentengineer,
teacher or a businessman, the Acorn and its sasinily ofman, the the
provide will a practical solution in
ovide a practical solution
virtually every situation,
Future expansion for A
includes the following
software and
hardware.

Send order form
4A market H ill Computers Ltd,
IA market Hill, Cambridgge, Cambs.
(Ayt) Acorrn Microcommputer(s)
(Acom MPU card with 1 K
RAM a and keyboard card with
cassette interface, in kit form, with
assembly instructions) at $£ 65.00$
plus $£ 5.20$ VAT assembly instruc
\square as above, assembled and as above, assembled and
tested at $£ 75.00$ plus $£ 6.00 \mathrm{VAT}$ - (aty) Acorn controlier(s) (minimum configuration MP
board with 6502, RAM $1 /$ T. TL
logic and capacitor-controlled
 Clock an $23 . .00$ ing
(Post and packe on all orders)
Please allow 28 days for delivery. Please allow 28 days for delivery.
lenclose acheque for. .
live LoAcorn Compu
This compact stand-alone microcomputer is based on standard Eurocard modules, and employs the highly popular 6502 MPU (as used in APPLE, PET, KIM, etc). Throughout, the design philosophy has been to provide full expandability, versatility and economy. Take a look at the full specification, and see how Acorn meets your requirements

Software
\qquad
Whh such flexibility at such a price, want to make the most of, soon.
 echnician, R\&D engineeror ${ }^{2}$
computer user, Acorn provides ou with a highty Acorn post:effectives boasis for a c computereror an industrial
development system. development system.
To get your Acom, just complete
this couno enclose a cheque (or this coupon, enclose a cheque (or
an official company order) and send an official company order) and send
it to sus If A corn doesn't meet your highest expectataions, return it to us
as received within 14 days, for a full as received within 14 days, for a full
cash refund. Acorn comes with a compre-
hensive guarantee eovering hensive guarantee covering
replacement of any fauty compon-
ents oplus an expert senvice facility. ents, plus an expert service facility spec, check the price again, then spec. check the price again,
send your order today!
Acorn Computers
Acorn Computers Ltd,
4A Market Hill, Cambridge, Cambs.
Cambridge (O223) 312772.
lenclose an official company
Please send me further details of this and othe

13

+ IT $=$

C. T. ELECTRONICS (ACTON) LTD.

267 \& 270 ACTON LANE, LONDON W4 5DG. Telephone: 01-994 6275

$$
\text { Registered in England } 1179820
$$

The above advertisement is a fraction of our stock holding. Trade \& Export welcome. No Mail Order other than trade. VAT extra 8% or 12%. P\&P dependent on article, etc.
U.K. RETURN OF POST MAIL ORDER SERVICE, ALSO WORLDWIDE EXPORT SERVIC

RADIO COMPONENT SPECIALISTS

LCR TESTING with the B424

.... connect
$17.0^{5}, 11 F$ read!

As fast and as simple as that, for batch testing, laboratory use or instrument servicing.
Accuracy 0.25% over a wide measurement range.
With its companion CA4 jig unit, the B424 Meter forms an easy-to-use L, C and R Component Test Station . and all for less than $£ 600$

wW - 111 FOR FURTHER DETAILS

ww-073 FOR FURTHER detalls

Gatronics NEW

WW TELETEXT DECODER

 components and PCB for new Character Rounding "Board 4"available now. PCB $£ 14.60 . \mathrm{Kit}$ (inc. PCB) $£ 25.75$

Plated Chainet

 FULL SPICC. PROFESSTONAL TELETEXT DECODER

wW-923 FOR FURTHER DETAILS

Barrie Electronics Litd.
3,THE MINORIES,LONDON EC3N 1BJ TELEPHONE: 01-488 3316/8 AREST TUBE STATIONS: ALDGATE \& LIVERPOOL.ST

WW - 085 FOR FURTHER DETAILS

Nevenco mixing consoles sophisticated performance from the pioneers

$\overline{w w}-\overline{023}$ FOR FURTHER DETAILS

ALL INVOICES, ENQUIRIES, ETC. TO OUR TEMPORARY ADDRESS OF
 NORWOOD ROAD READING

Telephone No.: READING 65916

MAIL ORDER PROTECTION

SCHEME
(Limited Liability)

ASTRA-PAK 92 GOdStone road, whyteleafe, surrey cr3 oeb				GRAND SALE			All prices include VAT. Add 25p for P.\&P (Extra for overseas). Send SAE for complete Special Offers list. Where more than one price appears, overall quantity -and 74 s camot be miees		

OPERATIONAL AMPLIFIERS

Second Edition
G. B. Clayton, BS

The first edition has been extensively rewritten and enlarged, to provide an introduction for the newcomer to the subject and a comprehensive coverage of the known modes of operational amplifier action. The enormous expansion in operational amplifier use has been taken into account and many useful circuits are presented. The text will prove equally valuable to both tudents and the practising engineer in the measurement sciences
19790408702028 £9.50 US $\$ 21.50$
PROGRAMMING FOR MICROPROCESSORS
Andrew Colin, MA, FBCS, CEng, FIEE
This book will enable electronic engineers, and amateurs with a knowledge of digital electronics, to learn microprocessor programming in the quickest and most efficient way. It covers the level of detail essential to the successful design of microprocessor systems and warns of common pitfalls. The Motorola 6800 is the main example used, but the techniques described can easily be transferred to other devices.
$1979 \quad 0408003200 \quad$ £7.95 US $\$ 18.00$

Electronic Brokers Itd The Test Equipment Pepple

PHILIPS
AITIJEATS GENERAL RADDID

HEWLETTT PACKARD

 RACAL
 ROGERS/SIGN

TEKTRONIX

T.E.S.

MARCONI

 INSTRUMENTS
UREI

Altanletors

MARCON

INSTRUMENTS

ROHDE \& SCHWARZ

ROHDE \& SCHWARZ

SEND FOR NEW 86 PAGE CATALOGUE Containing latest information on our
stock of of test equipment, minicomputers,
computer peripherals, stroboscopes and

ELECTRONIC BROKERS LIMITED ADD 8\% 49-53 Pancras Road, London NW1 2QB VAT Tel. 01-837 7781 . Telex: 298694 Hours of Business: 9 a.m. $-5 \mathrm{p} . \mathrm{m}$. $\quad \begin{aligned} & \text { Carriage and Packing charge } \\ & \text { items unless otherwise stated }\end{aligned}$
Mon.-Fri.: closed lunch $1-2$ p.m. ww-107 FOR FURTHER DETAILS

ELECTRO-TECH COMPONENTS LTD. 364 EDGWARE ROAD, LONDON, W.2. TEL: 01-723 5667.

CALLERS WELCOME

DATA GENERAL COMPUTERS

, WE HAVE SEVEN COMPLETE SYSTEMS. EACH COMPRISING:
Cabinet with power supplies. Fans, mains filter units, 240 V 50 HZ . Nova 820 mainframe 240 V 50 HZ , Nova 820 expansion chassis 240 V 50 HZ . CPU1 (8206) power mon and restart CPU2 (8207) mult/ div. I/O int (4007/4010) for TTY.
8192K 16 -bit memory board (8269 / 8274) word word.
Disc pack controller board (4046).
Gen. purpose int. bd. with data channel ($4040 / 4042$)
2.5 m byte disc storage system (Diablo) Series 30 (4047A) moving head. Disc power supply
240 V 50 HZ) with adaptor and logic board (4047) logic board (4047). Computer Control Panel.
C. T. ELECTRONICS (ACTON) LTD.

267 \& 270 ACTON LANE, LONDON, W4 5DG Telephone: 01-994 6275

> ANY MAKE-UP OR COPY QUERIES CONTACT JOHN GIBBON OR TONY FAYERS $01-2618353$

IS YOUR POWER SUPPLY OUTGROWING SYSTEM SIZE? THEN SWITCH TO STEC SWITCH MODE POWER SUPPLIES Reliable, Compact, Efficien 50 W Range $4^{\prime \prime} \times 8.5^{\prime \prime} \times 2^{\prime \prime \prime}$ '
215.5 V 10 A and other voltages
avail available. 100 W R Range $6.5^{\prime \prime} \times 8.5^{\prime \prime} \times 2^{\prime \prime}$.
3.31 b . 5 V 20 A and other voltages 3.3 lb .5 V 20 A and other voltages
vailable. GET MORE WATT PER E
WITH ASTEC VIDEOTIME PRODUCTS ww- 102 FOR FURTHER DETAILS

MASSIVE BULK PURCHASE BRINGS YOU HAZELTINE VDUs AT LOWEST EVER PRICES

 SPECIFICATION

D EC big SAvings on ou D EC LARGE STOCK OF PROCESSORS, PERIPHERALS AND ADD-ON MEMORY

DD11A
VT8E Alohanumeric
W11P Program
meic a graphic is..
TO1 AB Numenic single- ine de data endity corm
TC 11 TU56 DECape dive and control

ELECTRONIC BROKERS LIMITED [COMPUTER DIVISION]

Polathe

Advertisements accepted up to 12 noon Friday, February 23 for April issue, subjec

DISPLAYED APPOINTMENTS VACANT: $£ 8.50$ per single col. centimetre (min .3 cm BOX NUMBERS: 60 p extra. (Replies should be addressed to the Box Number in the Wireless World Dorset House Stamford Street London SE1 9LU.) PHONE: Barry Leary on $01-2618508$
Classified Advertisement Rates are currently zero rated for the purpose of V At

If nature had the research and development facilities that STL take for granted, the Bat would have adaptive antennas, as well as a precise navigation system.

The one thing we don't take for granted are our R\&D people. Because when you're working on projects like satellite navigation systems, adaptive microwave antennas and novel radar concepts the future's very much in your hands

And that means you. High-calibre graduate and post-grad men and women with R \& D experience in any of the following: radar system design and modelling; antenna systems, particularly arrays: VHF-UHF receiver ircuits; high-speed digital circuit design signal processing for radar and spreảd spectrum signals; microprocessor integration with radio and radar systems. As ITT's principal European Research Centre, we can naturally offer you excellent salaries and benefits
together with generous relocation expenses to this ssentially rural area on the Herts/Essex border. If you're ready for the future now, please send the coupon or contact Vaughan Hartridge, Personnel Department, Standard Telecommunication Laboratorie Ltd., London Road, Harlow, Essex CM1 7 9NA, or
telephone him on; Harlow 29531 ext. 361

Professional Careers in Electronics

All the others are measured by us... At Marconi Instruments we ensure that the very best of
innovative design is used on our range of innovative design is used on our range of
communications test instruments and AT communications test instruments and A.T.E. We have a
number of interesting opportunities in our Design, number of interesting opportunities in our Design,
Production and Service Departments and we can attractive salaries, productivitity bonsus, pension and sick pay schemes together with help over relocation.
if you are interested to hear more, please fill in the If you are interested
following detais:-

OFFSHORE OPPORTUNITIES

COMMUNICATION ENGINEERS $£ 8,500+$ p.a.
Repair and Maintenance of $V H F$, UHF, Troposcatter Repair and Maintenance of VHF, UHF, Troposcatter
and Multiplex equipment. HNC Cualification or Forces and Multiplex equipment. HNC qualification or Forces
experiene (Foreman of Signas
perience e peferred and ex-
extial. Engineers work 2 weeks on/offshore perience es
schedule.
COMMUNICATION TECHNICIANS $£ 7,000$ p.a.
ONC or City $\&$ Guilds Communications with 2 years
practical experience.
ELECTRONIC ENGINEERS c. $88 / 9,000$ p.a.
Experienced on following equipment: :CTV Systems, Experienced on following equipment: CCTV Systems,
Process Instrumentation, Acoustic Equipment, Micro-
Processors Process Instrumentation, Acoustic c Equipment, Micra
processors. HNC or 8 Sc qualificacaiton preferred.
ELECTRONIC processors. HNC or BSc qualification pref ${ }^{\text {E }}$,000 p.a.+
ELECTRONIC TECHNICIANS
Technicians with some computer, digital and analogue Technicians with some computer, digital and anal ogue
instrumentation experience. Aberdeen based with
periodic offshore work. Relocation assistance will be instrumentation experience. Aberdeen based with
periodic offshore work. Relocation assistance will be
given
given.
COMPUTER ENGINEER/PROGRAMMER COMPUTER E
c. £8,000 p.a.
Qualified to BSc.
c. $£ 8,000$ p.a.
Oulified to BSc. or HNC level with indepth exper-
ience of computer and Qualified to BSc. or $H N C$ level with indepth exper-
ience of comuter and peripheral equipment. Reason-
able knowledge of programming in Cobol/Fortran able knowledge of programming in Cobol/Fortran
languages.
ELECTRONIC/INSTRUMENT TECHNICIANS c. $\mathrm{E} 8,000 \mathrm{p} . \mathrm{a}$
To work offsh To work offshore on 2 week on/off schedule. Petro-
chemical or heavy industrial experience required.

For further information and application forms please
contact Margaret Duthie.

Gramplan Technical Services Ltd. 27 York Place, Aberdeen. Tel: (0224) 2892

Licence No. SC 144

MAINTENANCE TECHNICIAN

Experience in audio/visual electronic installation and a Experiedenge of light engineering / fabrication techniques
would be an advantage. would be an advantage.
You should have at least seven years' experience and be
qualified to ONC level.
qualified to ONC level
Salary within the scale $£ 3,675-£ 4,212$.
Application form from the Staffing Officer, Poly-
technic of the South Bank, Borough Road technic of the South Bank, Borough Road, Lo
SE1 OAA. (01-928 8989) quoting ref. ETS5.
Polytechnic
offthe
South Bank

Keeping in touch...

We are Europe's leading exporters of two way radio communica-
tions systems and as such can offer you the chance to work on exciting new development projects in some of the best equipped laboratories in the country.
Join us in Cambridge and you will be benefiting from a plan of
growth and development that has seen $£ 7$ million recently growth and development that has seen $£ 7$ million recently
invested in a new laboratory, production and headquarters nvested in a new laboratory,
complex on the banks of the Cam.

Electronic Development Engineers

[RF or Digital]
RF. Engineers to join teams working on the development of fixed, portable and link products or sub-units. Must havent radio
communications development experience and be familiar with design of VHF/UHF communications equipment or low medium The most advanced con
1000 oroviles anique
flexible system for

apacity multiplex radio links. We also require engineers with and portable development experience.
Digital engineers to work on computer-based interactive systems including digital signalling, encoders/decoders, speech synthesis
and data display. Must have experience of either machine code and assembler language programming or the design of digital nd analogue circuits. We're looking for men and women qualified
Systems Development

Engineer

est-effective encal feasiblity of new enquiries and to propose ost-effective engineering solutions. This entails provision of
echnical documentation and liaison with production, installation and field service departments.
Applicants should be qualified to Degree, HND or HNC level and have experience of Systems Engineering, Commissioning, Design/ Development or Field Work. Knowledge of two or more of the transmission: control: logic and processors, telegraphy line printers or exchange practice.

Electronic Designers

To make a major contribution to a project team developing low
capacity FDM/PCM radio links. Applicants should hold capacity FDM/RCM radio links. Applicants should hold a had at least 10 years' relevant design experience.

Mechanical Designers

To participate in the total design of new products. You should have acquired experience of product design for medium to large quantity production runs, and have extensive knowledge of design
in sheet-metal, plastics and diecast metal. An HNC or equivalent

PCB Draughtsmen

To join small teams of product engineers. You should have sound knowledge of the latest PCB design layout techniques and high quantity PCB production methods. Experience of com-
puter aided design and precision plotting is a major asset. A puter aided design and precision plotting is a major asset. A
relevant $O N C$ or equivalent qualification is preferred. We're offering good salaries to applicants of either sex with extremely attractive working environment, including sports ground, pavilion and social facilities within the complex. Living in Cambridge has its own benefits too, not only is it an attractive city, but it offers excellent sporting, recreational and a wide choice of reasonably priced housing. Added to which. London is quite close to hand, with the new M11 opening in Autumn and a rail journey soon to be brought down
to under 1 hour. So, apply now quoting job title to Alan Depauw, Road, Cambridge, CB4 1DW. Telephone Cambridge 61222 Ext. 305.

WIRELESS WORLD. MARCH 1979
THE ROYAL FREE HOSPITAL Medical Physics Technicians
(Electronics) Grades ill and IV

\qquad

Unvensiry of warwick ELECTRONICS
TECHNICIAN

MAINTENANC
 ENGINEER A Maintenance Engineer is required for the repair and testing of arane of porfessiona autio and lighting control equipment. of professional aud control equipment.
 Applicants should have sound knowledge of modern analogue and digital techniques and ideally. possesss courrent driving licence. Salary will Salary will be negotiable around $£ 4,000$ p.a. Apply with full dotails of qualifications to Box No. 8956

AUDIO + VIDEO LTD.

We are acknowledged as being the largest video tape duplicators in Europe with 5 Quad machines, 3 colour T/Cs, our own digital Standards Converter and countless duplication machines of all standards, providing unsurpassed quality. We are obviously looking for Engineers to match and will pay up to $£ 7,000$ for the right persons. If you have the desired 7161 7161

CHIEF TECHNICIAN (Grade 7)

 Readings
Berks, RG6 2Ahtekni
 Proven ability to repair equipmen
mori mportant than formal qual
fications. Salary

WiRELESS WORLD. MARCH 1979
Appointments

Technician Engineers

The Plessey Development Laboratory at Havant, Hampshire, is sub-contractor for the most advanced VHF communications system ever to be developed for the British Army. This system - known as "Single Channel Radio Access" - allows mobile subscribers to use the Ptarmigan trunk telephone network for both voice and data messages.
We are now proceeding with the second phase of development, creating new career opportunities for
What jobs are on offer?
We are looking for Technician Engineers with experience in industry or H.M. Services to work in the
VHF Radio Equipment Development and Evaluation
Successful candidates will be involved in the development of transmitters and receivers and in the

Development and Evaluation of Digital Equipment

Candidates wher circuits and systems will find opportunities to work under the uidance of experienced senior engineers on the most up-to-date techniques, including microprocessors. What qualifications?
The type of work we do needs people with practical experience of transistorised equipment, a common sense approach and a willingness to work with others towards a common goal. Ideally, you will possess Salaries and career prospects?
We operate a separate structure for Technician Engineers which offers scope for career development. younger person would be encouraged to qualify to transfer into the Professional Engineering grades. younger person would be encouraged to qualify to transfer into the Professional Engineering grades.
Because our plans for business expansion are soundly based on a full order book for a wide range of both government sponsored and private venture products, we can offer you both job stability and the up-todate experience which is essential to our future growth.
Technician Engineers are recognised as important members of our teams and are rewarded accordingly. Situated in a semi-rural environment near Portsmouth, Chichester, the South Downs and several seaside resorts, we are well placed for housing, educational and recreational amenities. Generous
relocation assistance will be given as appropriate and there is a comprehensive range of large company benefits.
Please write with brief career details or telephone for an application form. L. Wise, Recruitment Manager, The Plessey Company Limited, Martin Road, West Leigh, Havant, Hants. Tel: (0705)
486391. Applications are invited from either sex.
©plessey

Appointments
 ${ }_{134}$

Electronies Engineers on the move
 WALLINGTON, SURREY REF. WW95 BERKSHIRE
 REF. WW96
 AUDIO TAPE ENGINEER
 For design and development of magnetic tape copying machines,
 Attractive salary offered
 30 MILES S.W. OF LONDON REF. WW97 ENFIELD REF. WW98 POWER CONVERSION
 SPECIALIST
 Salary negotiable up to $£ 7,000$ p.a.
 WATFORD REF. WW99 ALL UK AREAS REF. WW100 STANDARDS/SPECIFICATION ENGINEER
 An interesting opening for a mature engineer with previous design
 experience to join a dynamic team working on sophisticated medical equipment using latest state of art devices including medical equipmen microprocessors.
 Salary $\mathrm{c} . \mathrm{£} 7,500$ p.a
 Capiral ippointments L(d. 2F) $30 . W$ REF. WW 101
 PERSONNEL MANAGERS
 COULD YOU USE THIS SPACE?
 TELEPHONE BRIAN CORNWELL
 FOR DETAILS
 Caphral ippointments L(d. 2F)30. Windimill SH. London.W.1. T. 01-637 S55n ENFIELD REF. WW103 SOUTH-EAST LONDON REF. WW104
 TEST EQUIPMENT ENGINEERS
 We need your skillss A new department has been formed to design test gear and ATE for in house use. Several appointments will be
 Salary $£ 5,000-£ 7,000$ p.a.
 PROJECT ENGINEER
 Design and development of special purpose machines. Experience of AC and DC roxating machines and the associated electronic of $A C$ and DC rotatity control equipment.

 overseas
 REF. WW 105
 TECHNICAL REPRESENTATIVE
 Well-qualified engineer to represent major communications company throughout Middle East. Good knowledge of UHFF/VHF company throughout equipment essential.
 Salary negotiable
 SOUTH COAST
 REF. WW 106
 SYSTEM DESIGN ENGINEER
 To be responsible tor the analy sis and design of avionic systems . including software desigig and customer acceptance.
 Salary range $£ 4-6,000$ p.a.

Appointments

Electronics Engineers on the move

INVEST
Improve your chances of obtaining the best Electronics job availale by registering with us Now. We are reeruiting for
Over 3.300
Companies

 PLEASE WRITEINBLACK INK.

Tel: (Home):	(office):	Nationality now:	If not Brițish, is a Work Permit req'd?
Date of Birth:	Place of Birth:		
Marital Status:	Car Driver:	Car Owner:	

Type of Position required: Approx. Salary level:

Please indicate areas in which you are prepared to work:				Approx. Salary level:	
				Are you a houseowner?	Are you willing to relocate?
Cent. London	S. Coast	E. Midlands		Are you prepared to travel - In U.K?	Overseas?
- ${ }^{\text {S.E.L.London }}$	N.W. Engld.			State of health:	
N.E. London	N.W. Engld.	Wales		Notice Period required:	Availability for Interview:
N.W. London	Scotland	Overseas			
Home Counties: N.W.	N.E.	S.W. \|S.E	S.E.		

EDUCATION:
Secondary School Qualifications
Coliege or University Qualns:
\(\left.\left.$$
\begin{array}{l|l|l|l|l|l|l}\hline \begin{array}{c}\text { INDUSTRIAL EXPERIENCE: } \\
\text { Period of } \\
\text { Employment }\end{array} \begin{array}{c}\text { Company \& } \\
\text { Location }\end{array} & \text { Products } & \text { Job Title } & & \text { Responsibilities }\end{array}
$$\right] \begin{array}{c}Reason for

leaving\end{array}\right)\)| Final |
| :---: |
| Salary |

[^4]you wish to detail further aspects of your experience or job requirenents,
please enclose on a s eparate sheet.

Appointments

SENIOR RADIO TECHNICIANS

Starting Salary $£ 8,500-£ 10,800$ pa tax free
Saudia, flag carrier of the Kingdom of Saudi Arabia requires Senior Radio Technicians for its Communication Division based in Jeddah and Riyadh. Duties will include general maintenance and repair of ground radio equipment as well as the upkeep of technical manuals, service records and spare part logs. Some travel will be involved visiting various locations served by

All
and 5 years related experience. City and Guilds certificate or equivalent would be an advantage. Current driving licence is essential.
Commencing point on the salary scale related to qualifications and experience.
These posts which are open to men aged between 25-45, are offered on a
two-year renewable contract together with free accommodation, free and reduced rate air tickets for you and your family, 40 calendar days vacation per annum plus relocation allowance.
Please write with cersol and career details quoting job title and department number to:-

Area Personnel Manager-Europe
Saudi Arabian Airlines,
Department 153/1,
508/510 Chiswick High Road,
London W4 5SQ.
Closing Date: February 28th, 1979

SAUDI ARABIAN ARLINES

SAUDI ARABIAN AIRLINES vemeroillin 8983

SERVICE SPECIALIST Kontron Intertechnique PRODUCT SPECIALIST

 engneer with a
Werk saisfacion
Apply to:

MARINE ELECTRONICS	
We need an engineer familiar with Radar, MF/HF synthesised SSB/ install anywhere, but must be based in London. you are able to be your own boss apply giving details of experience We salary required We are also prepared to offer an engineering partnership arrange- TELESONIC MARINE LTD. 243 Euston Road London N.W.1.	

DEVELOPMENT ENGINEERS

WHO ARE ALL AT SEA.
Radar or Transmitter Design
Marconi Communication Systems Ltd., is amongst the world leaders in the design, development
and manuacacure of a wide range of advanced communication systems for industrial and
commercia use. commercial use.
right now we are currently working on several exciting projects concerning communication and
radar equipment for the Merchant Navy. As a result we now need to recruit additional engineers (men/women) who will be immeditly involved in the design and development phase with the extended responsibility of overseeing the
designs through to production. If you have a degree or equivalent coupled with practical experience of communications or radar dispolass and techniques, then we would like to talk to you about a position at our headquarters
in helmsord. in Chelmstord.
The prospects for the future are bright and in addition to an attractive negotiable salary, we offer
good conditions and benefits including removal expenses in appropriate cases. Why not find out more by telephoning Gordon Short on Chelmsford (0245) 53221 or write to him at Marconi Communication Systems Ltd., New Street, Chelmsford,
Essex, for an application form.

MARCON
The pass card 103000 potential employers.
Here is a unique and efficient way of placin
employers without leaving your armchair.
It wor't involve you in inconvenient meetings or undercover
won't be pestered by us. You won't be asked for any money.
Over 3,000 gooded employeres, of al als sizes in in all for any mostries, sencu d s details of
their personnel requirements. When you posst the coupon below, we their personnel requirements. When you post the coupon below
will send you an apolication form to be completed and returned
wids with relevant details about yourself and those compa
don't want to oin (which we guarante to treat as

We match hour skills and ambitions with our clients
needs. Only when we tind ombe of them with is looking for
someone like you -orly when we have checked
someone like eou o only when we have check
again that you have not included them no your
list of employers not to be contacted -will
list of employers not to be contacted - will
we tell them about you. Then the invitation
ectly from that employer.
you think of all the different types of
years - you can see that wéve
helped thousands of people to
earnings.
Lansdowne
Lansdowne
Appointments
Design House
Design House,
The Mall, London
We 5 L.s.
Tel:01-579 2282
Tel: 01-579 22
(24 hour
answering

$\begin{array}{l}\text { answering } \\ \text { service). }\end{array}$

Barnet Trading Estate
Park Road, Barnet. Herts ENS 5SA
Telephone: 01-441 1919

Development Engineer-

Electronics Measurements

The person selected for this position will be a member of a team which provides Some of the more specific duties include:
The application of strain-gauges and the installation of lead, pressure, displacement, noise and vibration transducers in motor car ch wassis and engines. and the calibration and operation of these de
signal conditioning and recording apparatus.
Other areas of responsibility include the preparation of engineering reports, data nalysis and the servicing and calibration of apparatus. Candidates should possess Degrees or Higher National Certificates in electronic
engineering and preferably have been employed for a number of years in the field engineering and preferably h
of electronic measurements.
Uur expansion in the field of modern technology offers good prospects for the
successful applicant.
Persons selected from outside areas will be offered generous assistance with -location costs.
Holidays commence at 28 days per annum, good social and welfare facilities and a subsidised employee canteen are available. Male/female candidates s
for further information to: John Williams or Edward Owen,
Rolls-Royce Motors Limited, Rolls-Royce
Car Division, Car Division,
Pym's Lane, Crewe CW1 3PL. 27055155 Ext. 3339

UNIVERSITY OF LEEESS DEPARTMENTOF PHYSIO

 Appicantion ant iof Phtsiolocy ELECTRONICS TECHNICIAN GRADE 5

 Candidates should hold onc or equivialen

Applications stating age,

GAPITAL

 арроптTMENTS LtoFREE JOBS LIST field service enginers ASIC SALARIES
$£ 7,000+\mathrm{CAR}$

30 Windmill Street, London, W1
APPLIED MICROSYSTEMS LTD.
here are vacancies for a
LOGIC DESIGNER
 Penience and aiso circit asse
underate printed
a small and growing company Ring or wriée to Steve Brown at 17
Baker Street, Weybridge, Surrey.

RADIO TECHNICIANS Keep police lines open
 As a Police Radio Technician in Central or South London
youll hels make sure our wide range of equipment is in top rking condition.
Qualifications: two years' experience together with either C \& G
elecommunications Technicians Intermediate Cerificate; ONC or
 substantial extra allowances for those employed on shiftwork
 For details and an appplication form, contact:

$$
\begin{aligned}
& \text { CHIEF ELECTRONICS }
\end{aligned}
$$ TECHNICIAN (GRADE 2)

Unversir of luerpoo
EXPERIMENTAL or SENIOR EXPERIMENTAL OFFICER

Appications toms may be be oby up

Quote Ref: RV/ 474 /W

Electronic EngineersWhat you want, where you want!

TJB Electrotechnical Personnel Services is a specialised appointments service for electrical and electronic engineers. We have clients throughout the UK who urgently need technical staff at all levels from Junior Technician to Senior Management. Vacancies exist in all branches of electronics and allied disciplines - right through from design to marketing - at salary levels from around $£ 4000$ to $£ 8000$ p.a.
If you wish to make the most of your qualifications and experience and move another rung or two up the ladder we will be pleased to help you. All applications are treated in strict confidence and there is no danger of your present employer (or other companies you specify) being made aware of your application.

TJB ELECTROTECHNICA PERSONNEL SERVICES, 12 Mount Ephraim, Kent. TN4 8AS.
Tel: 089239388

Please send me a TJB Appointments Registration form:
Name.
Address

Instrumentation Engineer (Electronics)

The Development Instrumentation Department, at the
Rolls-Royce East Kilbride Engine Test Facility, has a vacan Rolls-Royce East Kilbride Engine Test Facility, , has a vacancy for a
Section Leader to head a small group which is responsible for Section Leader to head a small group which is responsible for equipment.
Work includes development and construction of specialised nstruments as well xisting equipmen
Applicants should have appropriate experience and hold an 4482 . or equivalent qualification. Salary will be in the range apply.
lease apply in writing quoting experience to Aero Division - Scotland, East Kilbride, Glasgow G744PY.

AERODIVISION

AUDIO SERVICE ENGINEERS

Iteally, you should have previous experience in this field, although product
training will be given. On some occasions you would diso be required to visit other
locations in the U.K.

hayden laboratories limited
Bendall Mews, Bell Street, LONDON NW1 LIMITED
HAYDEN
television project engineer

Pro- Beil Lid manufactures custom built vision and audio
switching systems tor the professional broadcast industry and switching systems for the profesional broadcast industry:
markels the CapGen hharacter generator and Elcon tape cleaner: Due to expansion we reauire additional junior and intermediate
engineers to be responsibie for customer liaison, design and test of engineers to be ress
swithing systems.
Switching sysiems.
The position offers a chance to oi oin a small expanding company and to
 accepiance. A A coll
involved. In adiditon to a good salary we offer BUPA membership, a friendly environment and excellent career prospee

UNivensiry of Liverpoo
Electronics TECHNICIAN

ENGINEER TECHNICIAN

 For more details contact David Steel at:
pro-bel

WE ARE SEEKING A PROJECT LEADER TO LOOK AFTER THE TECHNICAL NEEDS CUSTOMERS AT HOME AND ABROAD organizing a small but enthusiastic team to solve a wide variety engineer who can apply your skills to production and operation of a sophisticated range of colour TV receivers. You will be experient the design, Some knowledge of safety performar TV and customer service, with particular emphasis on export markets assessment in a modern factory envire of domestic electronics, test house approvals and quality assurance environment will also be useful.
experience of the performance and construction world-wide sources, prior to purchase, and hence some (tye of equipment will be an asset, the North Fast and to our customers, but at Chessington, Surrey, but occasional visits to our factortes in North East and to our customers, both at home and overseas, will be required.
where riate.
If this sort of challenge is of interest and you feel you can make a real contribution to the
REDIFFUSION

WIRELESS WORLD, MARCH 1979
SOUND ENGINEER

TOP JOBS IN

It's the variety that comes with working on a wide range of
equipment. And the interest knowing that your skills and experience are playing a vital role in
maintaining the critical standards maintaining the critical standards
demanded by major airlines and Air Forces for their highly sophisticated avionicsequipment. Working either in aircraft or in situated workshops in Stanmore, Middlesex, you will be involved in the repair, maintenance and overhaul
of a variety of advanced airborne of a variety of advanced airborme
electronics equipment, both British electronicsequi
and American.

It's work for which you'll need
MARCONI AVIONICS
AGEC-Marconi Electronics Company
to have sound practical experience of racio andio to microwave. You should
from aud also have experience of using advonced testequipment for fault
diagnosis, although training can be diagnosis, althought rive
We can offer you an excellent salary and benefits together with salaly first-class working conditions
reand subsidised staff restaurant, so if and subsidised staff restaurant, soing
it's variety and interestyou're looking it's variety yand interestyour ore experienceto: Mrs. E. Wagg, Marconi Avionics Limited,
22-26 Dalston Gardens, Stanmore, Middlesex HA7 1 BZ .
M

Eingineers

- DESIGN / DEV
- TEST

High Salaries - Most Areas
Phone 01 - 7314353
Apex Personnel

Automatic Test Engineer

North West London

Your responsibitities will be

Applicants should be qualified to HNC (Electronics), $\mathrm{C} \& \mathrm{G}$
FTC (Electronic)
If pu have aeem nand demonstrabe interest in iatio and

Contact: Jane Brooks on (01) 235 7030 Ext. 246.
(answering serv)
(01) 235 6938)
Professional
Applications are welcome from
\& Executive
both men and women (8955)

RADIO TECHNICIANS

```
*u*)
```

JOHN د SMITH BRIDGE ST YORKS
REFERENCE TO TWO YEAR CONTRACT--
GROUND RADIO - SAUOL ARABI A STOP
PLEASED TO TEL YOU TTAT YOUR AP PLEAE IS ACCEPTED STOP WE WOULD
PST
PASSPORT ARRMGEMENTS ETC PLE PASSPORT ARRN SOENEST TODA
$01-5745000$ S.
 ST OFFICE TELEGRA
NO CHARGE FOR DELUERY

BRIDCE STREET

Heres a

 communication that's worth £16,350 tax freeLockheed Aircraft International in Saudid Arabia are now offering two year contracts worth $£ 16,350$ tax maintain and repair SHF, UHF, VHF, and HF(SSB) radio equipment and systems and who preferably hav knowledge of systems engineering and microwav nstallation repair and maintenancer the range of highly complex electronic equipment in the fields of communications and aviation services.
So a two year contract with them will not only see a sizeable increase to your bank balance-it will also se you developing your specialist experience in an operational environment.
The minimum total earnings we have mentioned
include bonus and cost of living allowance.

HAMPSHIRE FARNBOROUGH COLLEGE OF TECHNOLOGY
 \section*{LECTURER}

Able to teach up to at least T.E.C. Certificaterte level. Appropriate qualifications required, with practical experience in Electronics.
Further particulars from:
The Staffing Officer
Farmborough College of Technology
Boundary Road, Farnborough, Hants, GU14 6SB

Then there's a substantial benefits package which includes: Three paid leave periods annually with three free flights home to the UK * Free food, laundry and ba

tion
Fr

* Free medical care and life insurance * Good recreational facilities
* Excellent prospects for employment beyond If you are period.
excellent opporested in hearing more about these
quoting ref: 017 L , to RecruitmentOfficer,
IAL, Aeradio House,
Hayes
Hayes Road, Souse,

CANCER RESEARCH CAMPAIGN ELECTRICAL ENGINEER/PHYSICIST PHYSICS OR ELECTRONICS TECHNICIAN

[^5]

Opportunities in Broadcast Technology

Pye TVT now have openings for Development Engineers. Based in Cambridge, you will be working ned of project

TRANSMITTER DEVELOPMENT
and a.m. sound broadcast transmitters and transposers. Broadcast experience is and and a.m. sound broadcast rans d enthusiasm.

STUDIO ENGINEERING
Openings exist in aspects of the design of digital equipment for broadcast T.V
 data processing equipment is essential.
Opportunities exist at all levels and salary will depend on previous
experience and background. Applicants should be qualified to
experience and background. Applicants should be qualified to degree/H.N.D. holidays, plus the opportunity for career advancement within the broad cast industry.

For an application form, contact:
Pye TVT Limited, Coldhams Lane, Cambridge CB1 3JU
 of Combtride Givauo

8991

Appointments

Skilled in Electronics?

You could become a Systems Engineer

- Are you at least 20 years of age?

Have you 2 years' practical
electronics experience plus any electronicsexpene
one of the following?
City Cuild's full electronic
\square City \& Guild's full electronic
certificate
\square HNC in electronics A completed
Apprenticeship
AnH.M. Forces electronics training

- Will youaccept the challenge of
maintenance and diagnosis on
ICL's complex computer systems?
$\begin{array}{ll}\text { YES? Then we are interested in training } & \text { conditions even during training, then } \\ \text { yout } \\ \text { return this coupon or phone David Reeves }\end{array}$ youto join our skilled teams of
Systems Engineers in maintaining our customers' computers. After a thorough initial training you will be based on one of our customer site in the U.K. Within 18 months you
should be a fully trained Systems Engineer with a career rich in opportunity ahead of you. You will have the satisfaction of using all your technical expertise, tact and
personality as a representative of $I C L$. personality as a representative of these
If you are interested in one of these jobs, with excellent salaries and
return this coupon or phone David Re
on Stevenage 0438$) 68347$ or 68334 for an application form.

PAY PEANUTS GET MONKEYS

CURRENT VACANCIES INCLUDE
Design Development Engineers for a telecommunications
command control project involving P.C.M.; Time division multiplexing, A/D conversion, active tilters and circuits for speech
compression. To $£ 8,000$. Middlesex, Berks. border. compression, To $£ 8,000$. Middlesex, Berks. border.
2. Project Engineers, Systems Enginears for industrially spon-
sored research association with particular emphasison sored research association with particular emphasis on automation
and computerisation for the process ind ustries. To $£ 7,500$.
Surrey. and com.
Surrey.
Young
Young Hardware/Software Systems Engineer for design and
development associated with mini computer/microprocessor, development associated with mini computer / microprocessor,
controled A.T.E. Exp. assembler programming preferred. To
Logic Doesigners all Ievels for state of the art equipment used in
Lost the printing industry Microprocessor/minicomputer based
systems. To 66,500 . West Country. systems.
Computer Field Engineors - Vacancies throughout U.K.
including Home Counties Southern England Nottingham
Sid including Home Counties Southern England, Nottringham,
Newastie, Northampton, Leeds, Coventry, Bristol, Swansea.
Salaries negotiable. FOR PERMANENT STAFF
LITERALiY thousands of vacancies including Contrāt Test Enginears and Contract Prototype Wiremen.
on the South Coast.
Excellent rates. For further details please contadt:
Charles Airey Associates
probabiy the aest кnown suppuer of eiectronics enaineres in tue country-

Radio Technology - London

TELECOMMUNICATIONS OFFICER

The work includes the study of radio propagation matters over the
whole of the radio spectrum (10kHz-275GHz); forward planning and

 development
interference.

Candidates (aged at least 23) must have ONC in Engineering (with
pass in Electrical Engineering ' A ') or in Applied Physics, or an a pass in Electrical Engineering 'A') or in Aplied Physics, or an
equivalent qualification. In addition, they should have had experience equivalent qualification. In addition, they should have had experience
in the operation of radio recieving equipment and have anowledge of
current operational systems of radio communications.

Salary starting between $£ 4080$ and $£ 4820$ (according to age) and
rising to $£ 5170$. Promotion prospects. Non-contributory pension
scheme cheme

For further details and an application form (to be returned by
March 14, 1979) write to Civil Service Commission, Alencon Link,
 quote $T / 5025$.

HOME OFFICE

Telecommunications

Electronic Test Engineers

We manufacture and market audio noise reduction equipment which is used by
major recording companies, recording studios and broadcasting authorities throughout the world and have enjoyed successful growth since incorporation in
The success of such films as "Star Wars" and "Close Encounters of the Third Kind" has led to an increased demand for our cinema equipment and contributed to ou If you have practical knowledge and areria of erock
If you have practical knowledge and experience of electronic testing, think you can
test, calibrate and trouble-shoot our sophisticated equisment, enioy the challenge of quality and delivery pressures and want to hear about the excellent pay and
conditions, telephone Tony Hill, 01-720 1111.
Dolby Laboratories Inc
DODolby
Dolby Laboratories Inc
346 Clapham Road
London SW9 9AP
Telephone 01-720 1111

Medical Sales Engineers

 $-$

Development Engineers for sub-hunting and train spotting
 Ultra Electronic Communications, part of the international Dowty Group are world leaders in
 Men and women, for further information and an

sonar buoy design and manufacture, advanced railway and train location networks sophisticated aircraft communication systems and search and rescue beacons.
Development Engineers are highly regarded at Ultra and enjoy considerable autonomy and opportunities for travel and customer contribute and influence projects in a sophisticated technological environment.

To join us you should be qualified to degree level Electronics o Mechanical Engineering and have upwards of 4 years experience of development work in electronics environ

Salaries will be negotiable and accompanied by a wide range of attractive large company
benefits, including
a very generous
relocation package application form, please phone or write to Mr. Gavin Rendall, Personnel Manager,
Ultra Electronic Communications Limited, 419 Bridport Road Greenford, Middlesex. UB6 8AU. Tel: 01-578 0081.

These opportunities are in the Scientific and
Technical Branch which provides the scientific, engineering and other professional
services essential to the provision of medical services essential to the provision of medical
apparaus, instrumentation and supplies to
hospitals.

The successful candidates will join a team
working on the specification, laboratory testing, inspection and quality, control of a wide
range of medical electrical and electroni range of medical electrical and electronic
equipment used in the National Health Ser-

Disis
Candidates must have a degree or an equivalen
qualification in electronics or electrical engineering Cualifiction in electronics or electrical engineering
quad at least 2 years' experience in the design of
alectronic equipment covering analogue and dita and at least 2 years' experience in the design oft
electronoic equipment covering analogue and digital
circuits Experience of medical electrical equipment
advantageous. Starting salary between $£ 4,790$ and $£ 6,200$ depen
ding on qualifications and experience. Nonding on qualifications and experience. Non
contributory pension scheme. Promotion prospects. For further details and an application form (to be
returned by 15 March, 1979) write to Civil Service Commission, Alencon Link, Basingstoke, Hants, RG2
1JB, or telephone Basingstoke (0256)
68551 1JB, or telephone Basingstoke (0226) 6851 (an
swering service operates outside office hours). Please swering service ope
quote $\mathrm{T}(40) 85 / 2$.

(8996)

SOWTER TRANSFORMERS WTH 37 Y EARS' EXPFRIIENCE wo have the oxporisis to design and manufacturo ANY TVPE OF AUDIO TRANSFORMER AT THE RIGHT PRICE We have standard design for AMCRON and BOSE Amplitiers. and can also supply

 CHESS CHALLENGER 10 level ver
sion
Vin

Tiv. TUBE Tlant iraninge best bent

plant
tranting
benta
gineering

BIG SALE OF TEST EQUIPMENT
 2,000 plus items to go

Sale starts Saturday, 10th March through to the 17 th Sunday
inclusive
Open from 90° clock till 6 EXAMPLE
 Some other makes cheaper.
Signal generators from $£ 20.00$ and many other bargains.
Sold as seen.

P\&RTEST EQUIPMENT
Salcott Mill, Goldhanger Road, Heybridg
Near Maldon, Essex
Tel: Maldon (0621) 57446

ELECTRowic scrap. Components,
$\begin{array}{l}\text { ete. Receivers. Transmititer } \\ \text { Equst } \\ \text { Equipment wanted } \\ \text { Ferrographs }\end{array}$

A.R. Sinclair

\qquad

Wheless worlo, MARCH 1979
counss

I.H.S. SYSTEMS

 We can produce, teitst and calibrate to
anion sitandard digita ana loyene and
RF equipment in batches of tens to
 requirements, ors s.
prompt quotation.
TEL. $01-253 \mathbf{4 5 6 2}$
or reply to Box No. WW 8237

TEST EQUIPMENT We are disposing of a consid
erable amount of good quality test gear including Tektronic
scopes at silly prices.

* Ring Derek Pattinson now
and discuss your requiren Crofton Electronics Ltd Twickenhan, , Midoclosese.
Tel. $01-891$ 1923

DESIGN SERVICE. Electranic D
SiEm Develoment and Prouction
Service avaliable ind

 * World-wide proven reliability. * Low servicing costs. * $20 \mathrm{~K} /$ volt sensitivity and high accuracy. * Large mirror scale meter. * Fully protected against overload. * 12 month warranty, backed by a full after
sales service at E.B.Sole U.K. Distributors. sales service at E.B.Sole U.K. Distributo
Prices from $£ 16.60-£ 32.00+$ VAT Prices from $£ 16.60-£ 32.00+$ VAT whole range including accessories. = $=$ ELECTRONIC 1 프 = BRECRERS LIMITED 49-53 Pancras Road, London NW1 20B.
Tel: 01-837 7781 . Telex: 288694.

W-106 FOR FURTHER DETALL

INDEX TO ADVERTISERS
Appointments Vacant Advertisements appear on pages 129-151

PAGE	GE	PAGE
Acorn Computer 113	Ferranti	Patrick, J. B.
Acoustical Mfg. Co. Ltd .	Future Film Developments	Powell, T. Eliecronics106, 107
AEL Crystals ${ }^{32}$	Fylde Electronic Labs Ltd.	Precision Petite Ltd. ${ }^{109}$
Amp of Great Eritain $35,40,41$	GEC M-O Valve 16	nicam 5,13
	G.R. Electronics (Quarndon Electronics (Semiconductors) Lt
Aspen Electronics Ltd	Greenwood Electronics Lta. 25	
Astra-Pak	Harmsworth Townley \& Co. Ltd. 24	Radford Lab. Insts. Ltd.
Avo Ltd 16, 64	Harris Electronics (London) Ltd. 16, ${ }^{24}$	Radio Components Specialists 115
	Hart Electronics ${ }_{29}$	${ }^{\text {Radio Shack }}$ Radios
	Hi-Fi Y/Book ${ }^{18}$	Raife. P.
	Hivol Connectors ${ }^{18}$	R.C.S. Electronics
Barrie Electronics Ltd 117		R.S.T. Valves ...
Bell \& Howell	I.L.P. Electronics Ltd	Sabtronics (UK) Ltd.
Beyer Dynamics (GB)	Applications	Sandwell Plant itd
${ }_{\text {Bi Pak Semiconductors Lta. }}^{\text {Biol........... }} 102$, 103		struments
Boss Industri		
Brensal	Jayen Developments	ice Trading Co
Bulin Electronics Soundex Ltd. ${ }_{99}^{22}$	JPS Associates	Servo \& Electronics Sales
${ }_{\text {Butterworth \& Co. (Pub.) }}$ Bul.		
	Keithley Instruments Litd. 112	SME Ltd. ${ }_{34}^{23}$
21	KGM Electronics Ltd	9
Carston Electronics Ltd. ${ }^{29}$	Kirkham Am	cial Products Ltd. ${ }^{34}$
Carter Associates		
	Langrex	Electronics Ltd. . 1 98
Chiltmead Ltd. 119	ar El	y Ele
Circards No. 3 105	ell Electronics Lt	
Citadel Products Ltd. 3_{34}^{32}	London Instrument Repair Centre Lowe Electronics Ltd.	${ }_{\text {Technomatic }}^{\text {Teradio } \mathrm{Hi} \text { Lid. }}$. ${ }^{110}$
C. N. Stevenson ${ }_{\text {colomor (Electronics) Lidd. }} 127$		Transtel Communications 38
Clarke Smith (Vorte	MacInnes Laboratories Ltd. \quad. $\ldots \ldots \ldots \ldots \ldots \ldots .12$	
Continental Speciailities	Marco Trading	radio L
Crimson Elektrik	Marcon Iradstruments Ltad. Cov	Vero Electronics Ltd. ${ }^{27}$
CT Electronics	Marshall, A. \& Sons (London) Ltd	Videotime Products Viewdata
	Medelec ${ }^{\text {Martan }}$ (1at........................... 24	
Display Electronics ${ }^{126}$	Milward, G.F. 110	
	Multicore Solders Ltd. Cover iv	West Hyde Developments Lta. 100
ECM (k9 Comps) 118	MHZ Electronics	Wilmot Breeden Elec. Ltd. 116
	Nevenco	Wingrove \& Rogers Ltd. ${ }^{127}$
Electronic Brokers Ltd. (Second User Computer Div,)		Wilmslow Audio ${ }^{26}$
Electrovalue 119	OMB Electronics	2. \& 1. Aero Services Ltd. 35, 10
		Mr. Jack Mentel. The Farley Y O. Suite 650. Panna Suiding
	Azabu Heights, 1-5-10 Roppongi, Minato-ku, Tokyo	
	TED Stutes of Americ: Ray Barnes,	Forsiole
ajusz, Hungexpo Advertising Agency.	Sille	
	Wr. Jack Farley Jnr., The Farley Co., Suite The, Chicargo, Illinois 60601 - Telephone: (312) 6	in H. MacCulloch, International Advert
Italy: Sig. C. Epis, Etas-Kompass, S.p.a. - Servizio Estero, Via Mantegna 6. 20154 Milan.	Mr. Victor A. Jauch. Elmatex Inerrational. P.O. Box 34607, Los Angeles. Calif. 90034 , USA - Telephone (213)	

fact:
 you can choose your microphone to enhance your sound system.

Shure makes microphones for every imaginable use.
Like musical instruments, each different type of Shure microphone has a distinctive "sound," or physical characteristic that optimizes it for particular applications, voices, or effects.
Take, for example, the Shure SM58 and S Take, for example, the Shure SM58 and SM59 microphones:

Toolbox

Reels

Three solders that
cover all your electrical
applications. 40/60 Tin/Lead Size Savbit Alloy/

Size 3
Size 10 f2. 38 each

1

Multicore Desoldering Wick

For desoldering component leads from PCB's or removing soider from virtually any joints.

Size AB10 97p inc. VAT
 of flex and cable.
Fitted with extra strong spring for automatic opening. Easy grip handles | and handle
locking device.
Ref 9
£1.15 inc. VAT
000

Bib

(Savāit Dispenser
I For radio, TV and similar work.
| Reduces copper erosion
I Size 5 58p inc. VAT

Emergency Solder

Self fluxing, tin/lead solder tape that melts with a match. For electrical and non-electrical

Size 19A All electrical work
Size PC115 For small components
Size SV130 Use with copper bits and wires
Size AR140 Metal repairs
Size AL150 Aluminium
Size SS160 Stainless Steel16 f1.38

I (All prices inc. V.A.T.)

Groov-Stat Electronic 3000

This improved static reducer, powered by one small battery, neutralises record surface static in seconds.
Comes in permanent storage box with FREE static tester.

Ref $3000 \quad \mathrm{E} 9.98$ inc. VAT (Pat. pending)

All prices shown are recommended retail, inc. VAT.

Bib
In difficulty send direct, plus 20p P \& P. Send S.A.E. for free copy of colour catalogue detailing complete range. Bib Hi-Fi Accessories Limited,
Kelsey House, Wood Lane End, Hemel Hempstead, Herts., HP2 4RQ.

[^0]: MACINNES LABORATORIES LTD
 Carlion Park Industrial Estate Saxmundham, Suffolk, IP I7 2 NL
 Tel. Saxmundham (0728) 2262/2615
 wW - 031 FOR FURTHER DETAILS

[^1]: Fuij video tapes-among the world's finest-are a Fuij video tapes-among the world's finest-are a
 comprehensive range extending from VHS to broadcasting.

[^2]: wW-033 FOR FURTHER DETALLS

[^3]: $1+\mathrm{G}(\mathrm{s}) \cdot \mathrm{H}(\mathrm{s}=\boldsymbol{\circ}$

[^4]: Please indicate any Companies you do not wish us to contact.

[^5]:

